979 resultados para NATURAL IMAGES
Resumo:
73 p. : il., col.
Resumo:
The objective of the present study was to determine the most suitable extender and their respective dilution ratios for African catfish sperm for artificial induced breeding and cryopreservation purposes. Three natural extenders were tested i.e. coconut water, sugarcane water and soybean solutions, at three different levels of sperm to extender dilutions of 1:20, 1:30 and 1:40. While Ringer solution was used as a control Diluted sperm were fertilized with ready isolated eggs to assess the fertility and hatching rate at 0, 6 and 12 hour intervals. The results showed that the eggs hatched approximately 19 to 27 hours after fertilization. In general, the fertilization and hatching rates decreased with increasing dilution ratio. With respect to natural extenders, the coconut water showed the highest fertility and hatching rates at 1:20 dilution ratio. Therefore, coconut water at 1:20 dilution ratio was the optimal condition for African catfish spermatozoa among the natural extenders investigated.
Resumo:
We propose a highly efficient content-lossless compression scheme for Chinese document images. The scheme combines morphologic analysis with pattern matching to cluster patterns. In order to achieve the error maps with minimal error numbers, the morphologic analysis is applied to decomposing and recomposing the Chinese character patterns. In the pattern matching, the criteria are adapted to the characteristics of Chinese characters. Since small-size components sometimes can be inserted into the blank spaces of large-size components, we can achieve small-size pattern library images. Arithmetic coding is applied to the final compression. Our method achieves much better compression performance than most alternative methods, and assures content-lossless reconstruction. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
106 p.
Resumo:
Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)
Resumo:
In addition to providing vital ecological services, coastal areas of North Carolina provide prized areas for habitation, recreation, and commercial fisheries. However, from a management perspective, the coasts of North Carolina are highly variable and complex. In-water constituents such as nutrients, suspended sediments, and chlorophyll a concentration can vary significantly over a broad spectrum of time and space scales. Rapid growth and land-use change continue to exert pressure on coastal lands. Coastal environments are also very vulnerable to short-term (e.g., hurricanes) and long-term (e.g., sea-level rise) natural changes that can result in significant loss of life, economic loss, or changes in coastal ecosystem functioning. Hence, the dynamic nature, effects of human-induced change over time, and vulnerability of coastal areas make it difficult to effectively monitor and manage these important state and national resources using traditional data collection technologies such as discrete monitoring stations and field surveys. In general, these approaches provide only a sparse network of data over limited time and space scales and generally are expensive and labor-intensive. Products derived from spectral images obtained by remote sensing instruments provide a unique vantage point from which to examine the dynamic nature of coastal environments. A primary advantage of remote sensing is that the altitude of observation provides a large-scale synoptic view relative to traditional field measurements. Equally important, the use of remote sensing for a broad range of research and environmental applications is now common due to major advances in data availability, data transfer, and computer technologies. To facilitate the widespread use of remote sensing products in North Carolina, the UNC Coastal Studies Institute (UNC-CSI) is developing the capability to acquire, process, and analyze remotely sensed data from several remote sensing instruments. In particular, UNC-CSI is developing regional remote sensing algorithms to examine the mobilization, transport, transformation, and fate of materials between coupled terrestrial and coastal ocean systems. To illustrate this work, we present the basic principles of remote sensing of coastal waters in the context of deriving information that supports efficient and effective management of coastal resources. (PDF contains 4 pages)