917 resultados para N-Acetyl cysteine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selected water-soluble precursors, including sugars, free amino acids and nucleotides, were quantified in raw and cooked goat meat, as a part of a study which the main aim was to better understand the aroma formation in goat meat. When compared with the same precursors in beef, lamb and chicken, levels in goat meat were generally similar, except for fructose and glycine, which were present at higher concentrations in goat meat. Fructose, glucose, IMP, and cysteine suffered the greatest losses during the cooking process and seem to be most involved in aroma formation in goat meat. The effects of these precursor changes on the volatile compound composition and formation process of them on cooked goat meat are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of 4-phenylbut-3-en-2-one with cyanoacetamide is not confined to a 1 : 1 reaction [which results in formation of 3-cyano-6-methyl-4-phenylpyridin-2(1H)-one]. The reaction of 2 mole equivalents of 4-phenylbut-3-en-2-one with one of cyanoacetamide also takes place, the products being 1-cyano-6-hydroxy-6-methyl-4-methylene-8,9-diphenyl-3-azabicyclo[3.3.1]nonan-2-one and 3-cyano-6-methyl-3-(3-oxo-1-phenylbutyl)-4-phenyl-3,4-dihydropyridin-2(1H)-one. The latter compound cyclises in acid medium to form 6-acetyl-4-cyano-1-methyl-5,8-diphenyl-2-azabicyclo[2.2.2]octan-3-one. X-Ray crystal structures of the 3-azabicyclo[3.3.1]nonan-2-one and the 3-azabicyclo[2.2.2]octan-2-one derivatives are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacological levels of zinc oxide (ZnO) incorporated into the post-weaning piglet diet reduce the incidence of diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) K88. The mechanism for this is not understood. Here, Intestinal Porcine Epithelial Cells (IPEC) J2 were used as an in vitro model of the porcine intestine. ZnO reduced IPEC J2 viability at concentrations >= 200 mu M, and ETEC adhesion to the host cell was unaffected by ZnO. Characterisation of the metabolism of IPEC J2 cells and ETEC established the effects of ZnO treatment on the metabolic profile of both. Although 100 mu M ZnO did not inhibit growth of either host or pathogen in fully supplemented media, metabolic profiles were significantly altered. Glucose and mannose were essential energy sources for IPEC J2 cells in the presence of ZnO, as the ability to utilise other sources was compromised. The increase in specificity of requirements to support respiration in ETEC was more pronounced, in particular the need for cysteine as a nitrogen source. These findings indicate that ZnO impacts on both host cell and pathogen metabolism and may provide insight into the mechanism for diarrhoea reduction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP), and consequent amino acid exchange from tyrosine to cysteine at location 139 of the vkorc1 gene (i.e. tyrosine139cysteine or Y139C), is the most widespread anticoagulant resistance mutation in Norway rats (Rattus norvegicus Berk.) in Europe. Field trials were conducted to determine incidence of the Y139C SNP at two rat infested farms in Westphalia, Germany, and to estimate the practical efficacy against them of applications, using a pulsed baiting treatment regime, of a proprietary bait (KleratTM) containing 50 ppm brodifacoum. RESULTS: DNA analysis for the Y139C mutation showed that resistant rats were prevalent at the two farms, with an incidence of 80.0% and 78.6% respectively. Applications of brodifacoum bait achieved results of 99.2% and 100.0% control at the two farms, when measured by census baiting, although the treatment was somewhat prolonged at one site due to the abundance of attractive alternative food. CONCLUSION: The study showed that 50 ppm brodifacoum bait is fully effective against the Y139C SNP at the Münsterland focus and is likely to be so elsewhere in Europe where this mutation is found. The pulsed baiting regime reduced to relatively low levels the quantity of bait required to control these two substantial resistant Norway rat infestations. Previous studies had shown much larger quantities of bromadiolone and difenacoum baits used in ineffective treatments against Y139C resistant rats in the Münsterland. These results should be considered when making decisions about the use of anticoagulant against resistant Norway rats and their potential environmental impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wealth of recent studies has highlighted the diverse and important influences of carbon monoxide (CO) on cellular signaling pathways. Such studies have implicated CO, and the enzymes from which it is derived (heme oxygenases) as potential therapeutic targets, particularly (although not exclusively) in inflammation, immunity and cardiovascular disease.1 In a recent study,2 we demonstrated that CO inhibited cardiac L-type Ca(2+) channels. This effect arose due to the ability of CO to bind to mitochondria (presumably at complex IV of the electron transport chain) and so cause electron leak, which resulted in increased production of reactive oxygen species. These modulated the channel's activity through interactions with three cysteine residues in the cytosolic C-terminus of the channel's major, pore-forming subunit. Our study provided a potential mechanism for the cardioprotective effects of CO and also highlighted ion channels as a major potential target group for this gasotransmitter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purolindolines are small cysteine-rich proteins which are present in the grain of wheat. They have a major impact on the utilisation of the grain as they are the major determinants of grain texture, which affects both milling and baking properties. Bread and durum wheats were transformed with constructs comprising the promoter regions of the Puroindoline a (Pina) and Puroindoline b (Pinb) genes fused to the uidA (GUS) reporter gene. Nine lines showing 3:1 segregation for the transgene and comprising all transgene/species combinations were selected for detailed analysis of transgene expression during grain development. This showed that transgene expression occurred only in the starchy endosperm cells and was not observed in any other seed or vegetative tissues. The location of the puroindoline proteins in these cells was confirmed by tissue printing of developing grain, using a highly specific monoclonal antibody for detection and an antibody to the aleurone-localised 8S globulin as a control. This provides clear evidence that puroindolines are only synthesised and accumulated in the starchy endosperm cells of the wheat grain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.