971 resultados para Mycobacterium avium subsp avium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. RIF-resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes ≤2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas–Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type 2 diabetes (diabetes) pandemic is recognized as a threat to tuberculosis (TB) control worldwide. This secondary data analysis project estimated the contribution of diabetes to TB in a binational community on the Texas-Mexico border where both diseases occur. Newly-diagnosed TB patients > 20 years of age were prospectively enrolled at Texas-Mexico border clinics between January 2006 and November 2008. Upon enrollment, information regarding social, demographic, and medical risks for TB was collected at interview, including self-reported diabetes. In addition, self-reported diabetes was supported by blood-confirmation according to guidelines published by the American Diabetes Association (ADA). For this project, data was compared to existing statistics for TB incidence and diabetes prevalence from the corresponding general populations of each study site to estimate the relative and attributable risks of diabetes to TB. In concordance with historical sociodemographic data provided for TB patients with self-reported diabetes, our TB patients with diabetes also lacked the risk factors traditionally associated with TB (alcohol abuse, drug abuse, history of incarceration, and HIV infection); instead, the majority of our TB patients with diabetes were characterized by overweight/obesity, chronic hyperglycemia, and older median age. In addition, diabetes prevalence among our TB patients was significantly higher than in the corresponding general populations. Findings of this study will help accurately characterize TB patients with diabetes, thus aiding in the timely recognition and diagnosis of TB in a population not traditionally viewed as at-risk. We provide epidemiological and biological evidence that diabetes continues to be an increasingly important risk factor for TB.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The figure of protection "micro-reserves" was created in the Region of Valencia (ANONYMOUS, 1994) with the aim of protecting endangered plant species. This is one of the areas of greatest floristic richness and uniqueness of the western Mediterranean. In this area rare, endemic or threatened vascular flora has a peculiar distribution: they appear to form small fragments spread over the entire region (LAGUNA, 1994; LAGUNA, 2001) The protection of every these small populations of great scientific value has significant challenges. It doesn´t try to protect every species that set out in Annex IV of the by then existing Law 4 / 1989 (repealed in 2007), or to protect to the most ecological level with the creation of Natural Protected Area but an intermediate level: the plant community of small size. According to the decree: “as Micro-Reserve will be declared the natural parcels of land under 20 hectares that contain a high concentration of rare plants, endemic, threatened or of high scientific interest” (ANONYMOUS, 1994) . Of course, the statement of an area as micro-reserve carries certain prohibitions that are harmful to the vegetal community

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La cancrosis o chancro bacteriano de los cítricos (CBC) causada por Xanthomonas citri subsp. citri (Xcc) y X. fuscans subsp. aurantifolii, afecta a un gran número de especies dentro de la familia de las rutáceas, especialmente cítricos. Esta enfermedad produce graves pérdidas económicas allí donde está presente, principalmente porque la comercialización de cítricos desde las zonas afectadas hacía zonas libres de cancrosis, está sujeta a fuertes medidas cuarentenarias. La cancrosis se encuentra distribuida a nivel mundial pero no se ha localizado ni en la Unión Europea ni en ningún área del Mediterráneo. Se han descrito tres tipos de cancrosis en función de la gama de huésped y de las características fenotípicas y genotípicas de las bacterias que las producen. La más extendida es la cancrosis tipo A producida por Xcc, dentro de la cual se distinguen los subtipos Aw y A*, originarios de Florida y Sudeste Asiático, respectivamente, que de forma natural solo son capaces de producir enfermedad en lima mejicana. En este trabajo se presentan estudios sobre mecanismos implicados en las primeras etapas de la infección, como la quimiotaxis y formación de biopelículas, en la cancrosis de los cítricos. La quimiotaxis es el proceso por el cual las bacterias se dirigen hacia zonas favorables para su supervivencia y desarrollo. Los perfiles quimiotácticos obtenidos frente a distintas fuentes de carbono, así como los estudios en relación al contenido de proteínas aceptoras de grupos metilo (MCPs), permitieron agrupar a las cepas de Xanthomonas estudiadas en este trabajo, de acuerdo a la enfermedad producida y a su gama de huésped. Todas las cepas mostraron quimiotaxis positiva frente a extractos de hoja y apoplasto de diferentes especies, sin embargo, Xcc 306, X. alfalfae subsp. citrumelonis (Xac) y X. campestris pv. campestris (Xc) manifestaron respuestas más específicas frente a extractos de apoplasto de hojas de naranjo dulce, lima y col china, respectivamente. Dicho resultado nos permite asociar el mecanismo de quimiotaxis con la capacidad de las cepas de Xanthomonas para colonizar estos huéspedes de forma específica. Las cepas estudiadas fueron capaces de realizar movimiento tipo swimming, twitching y sliding en distintos medios, siendo el movimiento swimming el único en el que se encontraron diferencias entre las cepas de Xcc con distinta gama de huésped. En este trabajo se ha estudiado además la formación de biopelículas en superficies bióticas y abióticas, un mecanismo importante tanto para la supervivencia en superficie vegetal como para el desarrollo de la infección. Las cepas de Xanthomonas estudiadas fueron capaces de formar biopelículas in vitro, siendo mayor en un medio que simula el apoplasto y que contiene una baja concentración de nutrientes en comparación con medios que contenían alta concentración de nutrientes. La formación de biopelículas en superficie vegetal se encontró relacionada, en las cepas patógenas de cítricos, con la capacidad para infectar un tejido o huésped determinado. Se han caracterizado algunos de los componentes de la matriz extracelular producida por Xcc, que compone hasta un 90% de las bipoelículas. Entre ellos destaca el ADN extracelular, que tiene un papel como adhesina en las primeras etapas de formación de biopelículas y estructural en biopelículas maduras. Además, se han identificado el pilus tipo IV como componente importante en las biopelículas, que también participa en motilidad. Finalmente, se han realizado estudios sobre la expresión de genes implicados en motilidad bacteriana y formación de biopelículas que han confirmado las diferencias existentes entre cepas de Xcc de amplia y limitada gama de huésped, así como el papel que juegan elementos como el pilus tipo IV o el flagelo en estos procesos. ABSTRACT Xanthomonas citri subsp. citri (Xcc) and X. fuscans subsp. aurantifolii are the causal agents of Citrus Bacterial Canker (CBC) which is one of the most important citrus diseases. CBC affects all Citrus species as well as other species from Rutaceae family. CBC produces strong economic losses; furthermore the commercialization of plants and fruits is restricted from infested to citrus canker free areas. The disease is worldwide distributed in tropical and subtropical areas, however it is not present in the European Union. Three types of CBC have been described according to the host range and phenotypic and genotypic characteristics. CBC type A caused by Xcc is he widest distributed. Within CBC A type two subtypes Aw and A* were described from Florida and Iran respectively, both infecting only Mexican lime. Herein mechanisms connected to early events in the citrus bacterial canker disease such as chemotaxis and biofilm formation, were studied. Chemotaxis allows bacteria to move towards the more suitable environments for its survival, host colonization and infection. Studies performed on citrus pathogenic Xanthomonas and X. campestris pv. campestris (Xc), a crucifer pathogen, have shown different chemotactic profiles towards carbon compound as well as different MCPs profile, which clustered strains according to host range and disease caused. Every strain showed positive chemotaxis toward leaf extracts and apoplastic fluids from sweet orange, Mexican lime and Chinese cabbage leaves. However, a more specific response was found for strains Xcc 306, X. alfalfae subsp. citrumelonis and Xc towards sweet orange, Mexican lime and Chinese cabbage apoplastic fluids, respectively. These results relate chemotaxis with the higher ability of those strains to specifically colonize their proper host. Xanthomonas strains studied were able to perform swimming, sliding and twitching motilities. The ability to swim was variable among CBC strains and seemed related to host range. Biofilm formation is an important virulence factor for Xcc because it allows a better survival onto the plant surface as well as facilitates the infection process. The studied Xanthomonas strains were able to form biofilm in vitro, on both nutrient rich and apoplast mimicking media, furthermore the biofilm formation by all the strains was higher in the apoplast mimicking media. The ability to form biofilm in planta by Xcc and Xac strains was dependent of the host and the tissue colonized. The wide host range CBC strain was able to form biofilm onto several citrus leaves and fruits, however the limited host range CBC strain produced biofilm solely onto Mexican lime leaves and fruits. Furthermore Xac strain, which solely infects leaves of young plants, was not able to develop biofilms on fruits. Some components of the extracellular matrix produced by Xcc strains have been characterized. Extracellular DNA acted as an adhesin at the very early stages of biofilm formation and as structural component of mature biofilm for citrus pathogenic Xanthomonas. Furthermore type IV pilus has been identified as a component of the extracellular matrix in biofilm and motility. Transcriptional studies of genes related with biofilm formation and motility have confirmed the differential behavior found among wide and limited host range CBC strains as well as the role of type IV pili and flagellum on those processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical quorum-sensing (autoinduction) regulation, as exemplified by the lux system of Vibrio fischeri, requires N-acyl homoserine lactone (AHL) signals to stimulate cognate transcriptional activators for the cell density-dependent expression of specific target gene systems. For Pantoea stewartii subsp. stewartii, a bacterial pathogen of sweet corn and maize, the extracellular polysaccharide (EPS) stewartan is a major virulence factor, and its production is controlled by quorum sensing in a population density-dependent manner. Two genes, esaI and esaR, encode essential regulatory proteins for quorum sensing. EsaI is the AHL signal synthase, and EsaR is the cognate gene regulator. esaI, ΔesaR, and ΔesaI-esaR mutations were constructed to establish the regulatory role of EsaR. We report here that strains containing an esaR mutation produce high levels of EPS independently of cell density and in the absence of the AHL signal. Our data indicate that quorum-sensing regulation in P. s. subsp. stewartii, in contrast to most other described systems, uses EsaR to repress EPS synthesis at low cell density, and that derepression requires micromolar amounts of AHL. In addition, derepressed esaR strains, which synthesize EPS constitutively at low cell densities, were significantly less virulent than the wild-type parent. This finding suggests that quorum sensing in P. s. subsp. stewartii may be a mechanism to delay the expression of EPS during the early stages of infection so that it does not interfere with other mechanisms of pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis is a chronic infectious disease that is transmitted by cough-propelled droplets that carry the etiologic bacterium, Mycobacterium tuberculosis. Although currently available drugs kill most isolates of M. tuberculosis, strains resistant to each of these have emerged, and multiply resistant strains are increasingly widespread. The growing problem of drug resistance combined with a global incidence of seven million new cases per year underscore the urgent need for new antituberculosis therapies. The recent publication of the complete sequence of the M. tuberculosis genome has made possible, for the first time, a comprehensive genomic approach to the biology of this organism and to the drug discovery process. We used a DNA microarray containing 97% of the ORFs predicted from this sequence to monitor changes in M. tuberculosis gene expression in response to the antituberculous drug isoniazid. Here we show that isoniazid induced several genes that encode proteins physiologically relevant to the drug’s mode of action, including an operonic cluster of five genes encoding type II fatty acid synthase enzymes and fbpC, which encodes trehalose dimycolyl transferase. Other genes, not apparently within directly affected biosynthetic pathways, also were induced. These genes, efpA, fadE23, fadE24, and ahpC, likely mediate processes that are linked to the toxic consequences of the drug. Insights gained from this approach may define new drug targets and suggest new methods for identifying compounds that inhibit those targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron is an essential nutrient for the survival of most organisms and has played a central role in the virulence of many infectious disease pathogens. Mycobacterial IdeR is an iron-dependent repressor that shows 80% identity in the functional domains with its corynebacterial homologue, DtxR (diphtheria toxin repressor). We have transformed Mycobacterium tuberculosis with a vector expressing an iron-independent, positive dominant, corynebacterial dtxR hyperrepressor, DtxR(E175K). Western blots of whole-cell lysates of M. tuberculosis expressing the dtxR(E175K) gene revealed the stable expression of the mutant protein in mycobacteria. BALB/c mice were infected by tail vein injection with 2 × 105 organisms of wild type or M. tuberculosis transformed with the dtxR mutant. At 16 weeks, there was a 1.2 log reduction in bacterial survivors in both spleen (P = 0.0002) and lungs (P = 0.006) with M. tuberculosis DtxR(E175K). A phenotypic difference in colonial morphology between the two strains also was noted. A computerized search of the M. tuberculosis genome for the palindromic consensus sequence to which DtxR and IdeR bind revealed six putative “iron boxes” within 200 bp of an ORF. Using a gel-shift assay we showed that purified DtxR binds to the operator region of five of these boxes. Attenuation of M. tuberculosis can be achieved by the insertion of a plasmid containing a constitutively active, iron-insensitive repressor, DtxR(E175K), which is a homologue of IdeR. Our results strongly suggest that IdeR controls genes essential for virulence in M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-third of humans are infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Sequence analysis of two megabases in 26 structural genes or loci in strains recovered globally discovered a striking reduction of silent nucleotide substitutions compared with other human bacterial pathogens. The lack of neutral mutations in structural genes indicates that M. tuberculosis is evolutionarily young and has recently spread globally. Species diversity is largely caused by rapidly evolving insertion sequences, which means that mobile element movement is a fundamental process generating genomic variation in this pathogen. Three genetic groups of M. tuberculosis were identified based on two polymorphisms that occur at high frequency in the genes encoding catalase-peroxidase and the A subunit of gyrase. Group 1 organisms are evolutionarily old and allied with M. bovis, the cause of bovine tuberculosis. A subset of several distinct insertion sequence IS6110 subtypes of this genetic group have IS6110 integrated at the identical chromosomal insertion site, located between dnaA and dnaN in the region containing the origin of replication. Remarkably, study of ≈6,000 isolates from patients in Houston and the New York City area discovered that 47 of 48 relatively large case clusters were caused by genotypic group 1 and 2 but not group 3 organisms. The observation that the newly emergent group 3 organisms are associated with sporadic rather than clustered cases suggests that the pathogen is evolving toward a state of reduced transmissability or virulence.