978 resultados para Muscles squelettiques


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries.

Methods: Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device.

Results: Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes.

Discussion:
High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Performing specific neck strengthening exercises has been proposed to decrease the incidence of neck injury and pain in high performance combat pilots. However, there is little known about these exercises in comparison to the demands on the neck musculature in flight.

Methods: Eight male non-pilots performed specific neck exercises using two different modalities (elastic band and resistance machine) at six different intensities in flexion, extension, and lateral bending. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels and four head positions. Surface electromyography (EMG) from selected neck and shoulder muscles was recorded in both activities.

Results: Muscle activation levels recorded during the three elastic band exercises were similar to in-flight EMG collected at +1 Gz (15% MVIC). EMG levels elicited during the 50% resistance machine exercises were between the +3 Gz (9-40% MVIC) and +5 Gz (16-53% MVIC) ranges of muscle activations in most muscles. EMG recorded during 70% and 90% resistance machine exercises were generally higher than in-flight EMG at +5 Gz.

Discussion: Elastic band exercises could possibly be useful to pilots who fly low +Gz missions while 50% resistance machine mimicked neck loads experienced by combat pilots flying high +Gz ACM. The 70% and 90% resistance machine intensities are known to optimize maximal strength but should be administered with care because of the unknown spinal loads and diminished muscle force generating capacity after exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aching muscles and joints, lethargy, and sleepiness are all signs of firefighter fatigue during bushfire suppression. If not managed, fatigue may lead to injury or illness for the individual, which may also compromise the safety and productivity of their crew. Understanding the many sources of firefighter fatigue is, therefore, fundamental for all Australian fire agencies. This article will briefly address  several factors thought to contribute to firefighter fatigue including; sleep loss, firefighter’s work activity, their hydration, and nutrition, the hot and smoky  working environment, firefighter’s physical fitness and their experience. This brief overview draws on findings from firefighting research and the broader scientific literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the traditional dependent variables of motor skill learning are accuracy and consistency of movement outcome, there has been increasing interest in aspects of motor performance that are described as reflecting the ‘energetics’ of motor behaviour. One defining characteristic of skilled motor performance is the ability to complete the task with minimum energy expenditure (Sparrow & Newell, 1998). A further consideration is that movements also have costs in terms of cognitive ‘effort’ or ‘energy’. The present project extends previous work on energy expenditure and motor skill learning within a coordination dynamics framework. From the dynamic pattern perspective, a coordination pattern lowest on the 11KB model potential curve (Haken, Kelso & Bunz, 1985) is more stable and least energy is required to maintain pattern stability (Temprado, Zanone, Monno & Laurent, 1999). Two experiments investigated the learning of stable and unstable coordination patterns with high metabolic energy demand. An experimental task was devised by positioning two cycle ergometers side-by-side, placing one foot on each, with the pedals free to move independently at any metronome-paced relative phase, Experiment 1 investigated practice-related changes to oxygen consumption, heart rate, relative phase, reaction time and muscle activation (EMG) as participants practiced anti-phase, in-phase and 90°-phase cycling. Across six practice trials metabolic energy cost reduced and AE and VE of relative phase declined. The trend in the metabolic and reaction time data and percent co-contraction of muscles was for the in-phase cycling to demonstrate the highest values, anti-phase the lowest and 90°-phase cycling in-between. It was found that anti- and in-phase cycling were both kinematically stable but anti-phase coordination revealed significantly lower metabolic energy cost. It was, therefore, postulated that of two equally stable coordination patterns, that associated with lower metabolic energy expenditure would constitute a stronger attractor. Experiment 2 was designed to determine whether a lower or higher energy-demanding coordination pattern was a stronger attractor by scanning the attractor layout at thirty-degree intervals from 0° to 330°. The initial attractor layout revealed that in-phase was most stable and accurate, but the remaining coordination patterns were attracted to the low energy cost anti-phase cycling. In Experiment 2 only 90°- phase cycling was practiced with a post-test attractor layout scan revealing that 90°-phase and its symmetrical partner 270°-phase had become attractors of other coordination patterns. Consistent with Experiment 1, practicing 90°-phase cycling revealed a decline in AE and VE and a reduction in metabolic and cognitive cost. Practicing 90°-phase cycling did not, however, destabilise the in-phase or anti-phase coordination patterns either kinematically or energetically. In summary, the findings suggest that metabolic and mental energy can be considered different representations of a ‘global’ energy expenditure or ‘energetic’ phenomenon underlying human coordination. The hypothesis that preferred coordination patterns emerge as stable, low-energy solutions to the problem of inter-and intra-limb coordination is supported here in showing that the low-energy minimum of coordination dynamics is also an energetic minimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the influence of muscle glycogen concentration on whole body insulin stimulated glucose uptake in humans and to examine the potential signalling mechanisms responsible for enhanced insulin action in the post exercise period. Untrained male subjects were conditioned to achieve a range of muscle glycogen concentrations via acute exercise or a combination of exercise and diet. The influence of muscle glycogen content on whole body insulin stimulated glucose uptake was determined via hyperinsulinaemic / euglycaemic clamps conducted at rest, 30 min after exercise or 24 hours after exercise. Muscle glycogen content did not influence insulin mediated glucose disposal either 30 min or 24 hrs after exercise when compared with basal. Conventional insulin signalling to muscle glucose uptake and signalling through the p38 MAPK cascade was also largely unaltered by glycogen concentration. Muscle glycogen synthesis was significantly increased in heavily but not moderately glycogen depleted muscle 30 min after exercise. Enhanced muscle glycogen synthesis occurred in line with a significant increase in insulin stimulated GSK-3 serine phosphorylation. This finding suggests that enhanced insulin sensitivity of muscle glycogen synthesis following glycogen depleting exercise may be mediated via a pathway involving alterations in insulin stimulated GSK-3 phosphorylation. In summary, whilst glycogen influences insulin mediated GSK-3 phosphorylation and glycogen synthesis, the findings of the present series of investigations suggest that the role of muscle glycogen in the process of insulin stimulated glucose uptake may not be as important as previously theorised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overall, this thesis was designed to explore the nature of adolescent boys' body image, the effects of body image on body change strategies and psychological adjustment, and the factors that influence body image. The first study examined body image in 362 adolescent boys. Body image was considered in terms of attitudes to different body parts and attributes, including, lower, middle and upper body, as well as weight, shape and muscles. The relationships between Body Mass Index (BMI), body image, sociocultural messages, psychological adjustment and body change strategies, including strategies to decrease weight and increase muscles using food and exercise, drive for thinness, bulimic attitudes and behaviour, excessive exercise, food supplements to lose weight, increase muscles and steroids, were also investigated. Multiple regression analyses were used to examine the role of body image, sociocultural messages and psychological adjustment to predict satisfaction with different body attributes and body change strategies. The findings from study one led to the development of a program aimed at preventing the development of unhealthy attitudes and behaviours among adolescent boys. Study two involved the implementation and evaluation of this prevention program. One hundred and twenty one boys participated in the program. The program was based on social-cognitive theory, and included a focus on accepting differences and the development of self-esteem. The boys who participated in the program indicated some change in existing attitudes and showed less development of risk behaviours relative to the control group. The implications of the findings from this thesis in relation to future research, as well as the prevention of adolescent boys' body image problems are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1−/− mice (1 week: wt, 38.8 ± 7.75%; LKB1−/−, 27.8 ± 12.98%; 4 week: wt, 75.8 ± 15.2%; LKB1−/−, 85.0 ± 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the α1 isoform of AMPK were markedly increased in both the wt and the LKB1−/− mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca2+–calmodulin-dependent protein kinase kinase α(CaMKKα) (5.05 ± 0.86-fold) and CaMKKβ (10.1 ± 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the α1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the α1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the α1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For decades, glycogen has been recognized as a storage form of glucose within the liver and muscles. Only recently has a greater role for glycogen as a regulator of metabolic signalling been suggested. Glycogen either directly or indirectly regulates a number of signalling proteins, including the adenosine-5'-phosphate- (AMP-) activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK). AMPK and p38 MAPK play a significant role in controlling the expression and activity of the peroxisome proliferator activated receptor γ coactivators (PGCs), respectively. The PGCs can directly increase muscle mitochondrial mass and endurance exercise performance. As low muscle glycogen is generally associated with greater activation of these pathways, the concept of training with low glycogen to maximize the physiological adaptations to endurance exercise is gaining acceptance in the scientific community. In this review, we evaluate the scientific basis for this philosophy and propose some practical applications of this philosophy for the general population as well as elite endurance athletes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty two, young, healthy individuals participated in three studies aiming to assess the effect of various types of physical activity - acute exercise of moderate intensity and duration, varying intensity, short-term training - on skeletal muscle GLUT-4 gene and protein expression as well as on a range of genes encoding the proteins involved in carbohydrate metabolism in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis found that light exercise between repeated sprints improved performance in a subsequent bout. This was attributed to a reduction in potentially fatiguing by-products within the muscle and an increased aerobic metabolism in the second sprint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosocial models of weight loss and increased muscles were empirically tested among adult exercisers. Although women experienced greater body dissatisfaction, both genders engaged in potentially risky strategies to reach their body goals, ranging from the use of food supplements and steroids to bulimic behaviours and excessive exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolism in Psammomys obesis, a polygenic animal model of obesity and type 2 diabetes is associated with dysregulated nocturnal fat oxidation in diabetic animals. Furthermore, a new gene called AGT-203 has been identified. Evidence indicates that AGT-203 is involved in abnormal glucose metabolism leading to the proposition that AGT-203 is a new candidate gene for type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine is an important molecule involved in providing energy to the body. Its major stores are in skeletal muscle. The creatine transporter protein (CreaT) mRNA is believed to be responsible for the uptake of the majority of creatine in skeletal muscle. This thesis examined factors that might have affected the expression of the creatine transporter in skeletal muscle.