973 resultados para Muscle Fiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a comparison between three analytical methods developed for the simultaneous determination of eight quinolones regulated by the European Union (marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, difloxacin, sarafloxacin, oxolinic acid and flumequine) in pig muscle, using liquid chromatography with fluorescence detection (LC-FD), liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedures involve an extraction of the quinolones from the tissues, a step for clean-up and preconcentration of the analytes by solid-phase extraction and a subsequent liquid chromatographic analysis. The limits of detection of the methods ranged from 0.1 to 2.1 ng g−1 using LC-FD, from 0.3 to 1.8 using LC-MS and from 0.2 to 0.3 using LC-MS/MS, while inter- and intra-day variability was under 15 % in all cases. Most of those data are notably lower than the maximum residue limits established by the European Union for quinolones in pig tissues. The methods have been applied for the determination of quinolones in six different commercial pig muscle samples purchased in different supermarkets located in the city of Granada (south-east Spain).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this research work “Identification of the Emerging Issues in Recycled Fiber processing” are discovering of emerging research issues and presenting of new approaches to identify promising research themes in recovered paper application and production. The projected approach consists of identifying technological problems often encountered in wastepaper preparation processes and also improving the quality of recovered paper and increasing its proportion in the composition of paper and board. The source of information for the problem retrieval is scientific publications in which waste paper application and production were discussed. The study has exploited several research methods to understand the changes related to utilization of recovered paper. The all assembled data was carefully studied and categorized by applying software called RefViz and CiteSpace. Suggestions were made on the various classes of these problems that need further investigation in order to propose an emerging research trends in recovered paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A LC-ESI-MS/MS method was developed and validated according to the European Union decision 2002/657/EC, for the determination of tetracyclines (TCs) in chicken-muscle since Europe is one of the main markets for Brazilian products. Linearity of r > 0.9979, limits of quantification in the range of 7.0-35.0 ng/g, average recoveries of 89.38 - 106.27%, within-day and between-day precision were adequate for all TCs. The decision limit and the detection capability were 93.00-106.46 ng/g and 95.84-114.38 ng/g, respectively. This method is suitable for application in surveillance programmes of residues of TCs in chicken-muscle samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large scale preparation of hybrid electrical actuators represents an important step for the production of low cost devices. Interfacial polymerization of polypyrrole in the presence of multi-walled carbon nanotubes represents a simple technique in which strong interaction between components is established, providing composite materials with potential applications as actuators due to the synergistic interaction between the individual components, i.e., fast response of carbon nanotubes, high strain of polypyrrole, and diversity in the available geometry of resulting samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of pulp processing on softwood fiber properties strongly influence the properties of wet and dry paper webs. Pulp strength delivery studies have provided observations that much of the strength potential of long fibered pulp is lost during brown stock fiber line operations where the pulp is merely washed and transferred to the subsequent processing stages. The objective of this work was to study the intrinsic mechanisms which maycause fiber damage in the different unit operations of modern softwood brown stock processing. The work was conducted by studying the effects of industrial machinery on pulp properties with some actions of unit operations simulated in laboratory scale devices under controlled conditions. An optical imaging system was created and used to study the orientation of fibers in the internal flows during pulp fluidization in mixers and the passage of fibers through the screen openings during screening. The qualitative changes in fibers were evaluated with existing and standardized techniques. The results showed that each process stage has its characteristic effects on fiber properties: Pulp washing and mat formation in displacement washers introduced fiber deformations especially if the fibers entering the stage were intact, but it did not decrease the pulp strength properties. However, storage chests and pulp transfer after displacement washers contributed to strength deterioration. Pulp screening proved to be quite gentle, having the potential of slightly evening out fiber deformations from very deformed pulps and vice versa inflicting a marginal increase in the deformation indices if the fibers were previously intact. Pulp mixing in fluidizing industrial mixers did not have detrimental effects on pulp strength and had the potential of slightly evening out the deformations, provided that the intensity of fluidization was high enough to allow fiber orientation with the flow and that the time of mixing was short. The chemical and mechanical actions of oxygen delignification had two distinct effects on pulp properties: chemical treatment clearly reduced pulp strength with and without mechanical treatment, and the mechanical actions of process machinery introduced more conformability to pulp fibers, but did not clearly contribute to a further decrease in pulp strength. The chemical composition of fibers entering the oxygen stage was also found to affect the susceptibility of fibers to damage during oxygen delignification. Fibers with the smallest content of xylan were found to be more prone to irreversibledeformations accompanied with a lower tensile strength of the pulp. Fibers poor in glucomannan exhibited a lower fiber strength while wet after oxygen delignification as compared to the reference pulp. Pulps with the smallest lignin content on the other hand exhibited improved strength properties as compared to the references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zorflex® activated carbon fibers (ACF), reference FM100 198B, are used before and after an oxidizing procedure with H3PO4 to study the adsorption of Pb2+. The point of zero charge was determined for the modified and unmodified fiber giving values of 2.3 and 4.3, respectively. After oxidizing the ACF, the fiber showed to have a greater Pb2+ adsorption capacity in comparison with the unmodified fiber, which is related with the acid sites increase, where lead was mainly adsorbed. Determination of the BET area was carried out by nitrogen physisorption at 77K. ACFs presented superficial areas between 1000 and 1500 m²/g showing mostly, a microporous structure. The preliminary design of an adsorbent using the modified fiber is presented where the fiber superior physicochemical properties over the unmodified one are observed.