971 resultados para Murray Valley encephalitis virus
Resumo:
The new class, the Tamaricetea arceuthoidis, is described covering riparian and intermittent shrubby vegetation of the Irano-Turanian Region in the southwestern and Central Asia and the Lower Volga valley. The dominating species are species of the genus Tamarix that refer high water table in arid and semi-arid habitats with high to moderate salinity. This new class is an ecological analogon of the Nerio-Tamaricetea occurring in the Mediterranean Basin.
Resumo:
Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.
Resumo:
Biologically active 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) binds the vitamin D receptor (VDR) to exert its effect on target cells. VDR expression is found in a number of immune cells including professional antigen-presenting cells such as dendritic cells. It has been found that the actions of 1,25-(OH)2D3 on the immune system are mainly immunosuppressive. The cross-presentation pathway allows for exogenously derived antigens to be presented by pAPCs on MHC-I molecules to CD8+ T cells. CD8+ T cell activation results in the expansion of epitope-specific T cell populations that confer host protection. These epitopes can be organized into an immunodominance hierarchy. Previous work demonstrated that introducing LCMV-NP via the cross-priming pathway significantly alters the immunodominance hierarchy of a subsequent LCMV infection. Building upon these observations, our study assessed the effects of LCMV-NP cross priming in the presence of a single dose of 1,25-(OH)2D3. Treatment with 1,25-(OH)2D3 was found to have biological effects in our model system. In vitro pAPCs were demonstrated to up-regulate IL-10 and CYP24A1 mRNA, in addition to the transactivation of cellular VDR, as demonstrated by a relocalization to the nuclear region. Mice treated with 1,25-(OH)2D3 were found to produce up-regulated IL-10 and CYP24A1 transcripts. Expression of VDR was increased at both the transcript and protein level. Our results demonstrate that a single dose of 1,25-(OH)2D3 does not affect the cross-priming pathway in this system. Treatment with 1,25-(OH)2D3 did not influence the ability of differentiated pAPCs to phagocytose or cross-present exogenous antigen to epitope-specific CD8+ T cells. Furthermore, 1,25-(OH)2D3 did not alter cross-priming or the establishment of the LCMV immunodominance hierarchy in vivo. By confirming that 1,25-(OH)2D3 does not suppress cross-priming in our model, our study helps to expand the understanding of the immunomodulatory role of exogenous 1,25-(OH)2D3 on the outcome of virus infection. Collectively, our data supports the observation that the role of 1,25-(OH)2D3 in the immune system is not always associated with suppressive effects.
Resumo:
We have compared the expression of the known measles virus (MV) receptors, membrane cofactor protein (CD46) and the signaling lymphocyte-activation molecule (SLAM), using immunohistochemistry, in a range of normal peripheral tissues (known to be infected by MV) as well as in normal and subacute sclerosing panencephalitis (SSPE) brain. To increase our understanding of how these receptors could be utilized by wild-type or vaccine strains in vivo, the results have been considered with regard to the known route of infection and systemic spread of MV. Strong staining for CD46 was observed in endothelial cells lining blood vessels and in epithelial cells and tissue macrophages in a wide range of peripheral tissues, as well as in Langerhans' and squamous cells in the skin. In lymphoid tissues and blood, subsets of cells were positive for SLAM, in comparison to CD46, which stained all nucleated cell types. Strong CD46 staining was observed on cerebral endothelium throughout the brain and also on ependymal cells lining the ventricles and choroid plexus. Comparatively weaker CD46 staining was observed on subsets of neurons and oligodendrocytes. In SSPE brain sections, the areas distant from lesion sites and negative for MV by immunocytochemistry showed the same distribution for CD46 as in normal brain. However, cells in lesions, positive for MV, were negative for CD46. Normal brain showed no staining for SLAM, and in SSPE brain only subsets of leukocytes in inflammatory infiltrates were positive. None of the cell types most commonly infected by MV show detectable expression of SLAM, whereas CD46 is much more widely expressed and could fulfill a receptor function for some wild-type strains. In the case of wild-type stains, which are unable to use CD46, a further as yet unknown receptor(s) would be necessary to fully explain the pathology of MV infection.