921 resultados para Multivariate wavelet analysis
Resumo:
Land use and transportation interaction has been a research topic for several decades. There have been efforts to identify impacts of transportation on land use from several different perspectives. One focus has been the role of transportation improvements in encouraging new land developments or relocation of activities due to improved accessibility. The impacts studied have included property values and increased development. Another focus has been on the changes in travel behavior due to better mobility and accessibility. Most studies to date have been conducted in metropolitan level, thus unable to account for interactions spatially and temporally at smaller geographic scales. ^ In this study, a framework for studying the temporal interactions between transportation and land use was proposed and applied to three selected corridor areas in Miami-Dade County, Florida. The framework consists of two parts: one is developing of temporal data and the other is applying time series analysis to this temporal data to identify their dynamic interactions. Temporal GIS databases were constructed and used to compile building permit data and transportation improvement projects. Two types of time series analysis approaches were utilized: univariate models and multivariate models. Time series analysis is designed to describe the dynamic consequences of time series by developing models and forecasting the future of the system based on historical trends. Model estimation results from the selected corridors were then compared. ^ It was found that the time series models predicted residential development better than commercial development. It was also found that results from three study corridors varied in terms of the magnitude of impacts, length of lags, significance of the variables, and the model structure. Long-run effect or cumulated impact of transportation improvement on land developments was also measured with time series techniques. The study offered evidence that congestion negatively impacted development and transportation investments encouraged land development. ^
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
The purpose of this study was to determine if there was a difference in the self-determined evaluations of work performance and support needs by adults with mental retardation in supported employment and in sheltered workshop environments. The instrument, Job Observation and Behavior Scale: Opportunity for Self-Determination (JOBS: OSD; Brady, Rosenberg, & Frain, 2006), was administered to 38 adults with mental retardation from sheltered workshops and 32 adults with mental retardation from supported employment environments. Cross-tabulations with Chi-square tests and independent samples t-tests were conducted to evaluate differences between the two groups, sheltered workshop and supported work. Two Multivariate Analyses of Variance (MANOVAs) were conducted to determine the effect of work environment on Quality of Performance (QP) and Types of Support (TS) test scores and their subscales. ^ This study found that there were significant differences between the groups on the QP Behavior and Job Duties subscales. The sheltered workshop group perceived themselves as performing significantly better on job duties than the supported work group. Conversely, the supported work group perceived themselves to have better behavior than the sheltered workshop group. However, there were no significant differences between groups in their perception of support needs for the three subscales. ^ The findings imply that work environment affects the self-determined evaluations of work performance by adults with mental retardation. Recommendations for further study include (a) detailing the characteristics of supported work and sheltered workshops that support and/or discourage self-determined behaviors, (b) exploring the behavior of adults with mental retardation in sheltered workshops and supported work environments, and (c) analysis of the support needs for and understanding of them by adults with mental retardation in sheltered workshops and in supported work environments. ^
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.
Resumo:
Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose. Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application. This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the "useful ablation efficiency" for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.
Resumo:
In the 1980s, government agencies sought to utilize research on drug use prevention to design media campaigns. Enlisting the assistance of the national media, several campaigns were designed and initiated to bring anti-drug use messages to adolescents in the form of public service advertising. This research explores the sources of information selected by adolescents in grades 7 through 12 and how the selection of media and other sources of information relate to drug use behavior and attitudes and perceptions related to risk/harm and disapproval of friends' drug-using activities.^ Data collected from 1989 to 1992 in the Miami Coalition School Survey provided a random selection of secondary school studies. The responses of these students were analyzed using multivariate statistical techniques.^ Although many of the students selected media as the source for most of their information on the effects of drugs on the people who use them, the selection of media was found to be positively related to alcohol use and negatively related to marijuana use. The selection of friends, brothers, or sisters was a statistically significant source for adolescents who smoke cigarettes, use alcohol or marijuana.^ The results indicate that the anti-drug use messages received by students may be canceled out by media messages perceived to advocate substance use and that a more persuasive source of information for adolescents may be friends and siblings. As federal reports suggest that the economic costs of drug abuse will reach an estimated $150 billion by 1997 if current trends continue, prevention policy that addresses the glamorization of substance use remains a national priority. Additionally, programs that advocate prevention within the peer cluster must be supported, as peers are an influential source for both inspiring and possibly preventing drug use behavior. ^
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
The theoretical construct of control has been defined as necessary (Etzioni, 1965), ubiquitous (Vickers, 1967), and on-going (E. Langer, 1983). Empirical measures, however, have not adequately given meaning to this potent construct, especially within complex organizations such as schools. Four stages of theory-development and empirical testing of school building managerial control using principals and teachers working within the nation's fourth largest district are presented in this dissertation as follows: (1) a review and synthesis of social science theories of control across the literatures of organizational theory, political science, sociology, psychology, and philosophy; (2) a systematic analysis of school managerial activities performed at the building level within the context of curricular and instructional tasks; (3) the development of a survey questionnaire to measure school building managerial control; and (4) initial tests of construct validity including inter-item reliability statistics, principal components analyses, and multivariate tests of significance. The social science synthesis provided support of four managerial control processes: standards, information, assessment, and incentives. The systematic analysis of school managerial activities led to further categorization between structural frequency of behaviors and discretionary qualities of behaviors across each of the control processes and the curricular and instructional tasks. Teacher survey responses (N=486) reported a significant difference between these two dimensions of control, structural frequency and discretionary qualities, for standards, information, and assessments, but not for incentives. The descriptive model of school managerial control suggests that (1) teachers perceive structural and discretionary managerial behaviors under information and incentives more clearly than activities representing standards or assessments, (2) standards are primarily structural while assessments are primarily qualitative, (3) teacher satisfaction is most closely related to the equitable distribution of incentives, (4) each of the structural managerial behaviors has a qualitative effect on teachers, and that (5) certain qualities of managerial behaviors are perceived by teachers as distinctly discretionary, apart from school structure. The variables of teacher tenure and school effectiveness reported significant effects on school managerial control processes, while instructional levels (elementary, junior, and senior) and individual school differences were not found to be significant for the construct of school managerial control.
Resumo:
The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.
Resumo:
Thiosalt species are unstable, partially oxidized sulfur oxyanions formed in sulfur-rich environments but also during the flotation and milling of sulfidic minerals especially those containing pyrite (FeS₂) and pyrrhotite (Fe₍₁₋ₓ₎S, x = 0 to 0.2). Detecting and quantifying the major thiosalt species such as sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), trithionate (S₃O₆²⁻), tetrathionate (S₄O₆²⁻) and higher polythionates (SₓO₆²⁻, where 3 ≤ x ≤ 10) in the milling process and in the treated tailings is important to understand how thiosalts are generated and provides insight into potential treatment. As these species are unstable, a fast and reliable analytical technique is required for their analysis. Three capillary zone electrophoresis (CZE) methods using indirect UV-vis detection were developed for the simultaneous separation and determination of five thiosalt anions: SO₄²⁻, S₂O₃²⁻, S₃O₆²⁻, S₄O₆²⁻ and S₅O₆²⁻. Both univariate and multivariate experimental design approaches were used to optimize the most critical factors (background electrolyte (BGE) and instrumental conditions) to achieve fast separation and quantitative analysis of the thiosalt species. The mathematically predicted responses for the multivariate experiments were in good agreement with the experimental results. Limits of detection (LODs) (S/N = 3) for the methods were between 0.09 and 0.34 μg/mL without a sample stacking technique and nearly four-fold increase in LODs with the application of field-amplified sample stacking. As direct analysis of thiosalts by mass spectrometry (MS) is limited by their low m/z values and detection in negative mode electrospray ionization (ESI), which is typically less sensitive than positive ESI, imidazolium-based (IP-L-Imid and IP-T-Imid) and phosphonium-based (IP-T-Phos) tricationic ion-pairing reagents were used to form stable high mass ions non-covalent +1 ion-pairs with these species for ESI-MS analysis and the association constants (Kassoc) determined for these ion-pairs. Kassoc values were between 6.85 × 10² M⁻¹ and 3.56 × 10⁵ M⁻¹ with the linear IP-L-Imid; 1.89 ×10³ M⁻¹ and 1.05 × 10⁵ M⁻¹ with the trigonal IP-T-Imid ion-pairs; and 7.51×10² M⁻¹ and 4.91× 10⁴ M⁻¹ with the trigonal IP-T-Phos ion-pairs. The highest formation constants were obtained for S₃O₆²⁻ and the imidazolium-based linear ion-pairing reagent (IP-L-Imid), whereas the lowest were for IP-L-Imid: SO₄²⁻ ion-pair.
Resumo:
The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.
Resumo:
Finite-Differences Time-Domain (FDTD) algorithms are well established tools of computational electromagnetism. Because of their practical implementation as computer codes, they are affected by many numerical artefact and noise. In order to obtain better results we propose using Principal Component Analysis (PCA) based on multivariate statistical techniques. The PCA has been successfully used for the analysis of noise and spatial temporal structure in a sequence of images. It allows a straightforward discrimination between the numerical noise and the actual electromagnetic variables, and the quantitative estimation of their respective contributions. Besides, The GDTD results can be filtered to clean the effect of the noise. In this contribution we will show how the method can be applied to several FDTD simulations: the propagation of a pulse in vacuum, the analysis of two-dimensional photonic crystals. In this last case, PCA has revealed hidden electromagnetic structures related to actual modes of the photonic crystal.
Resumo:
We introduce a discrete-time fibre channel model that provides an accurate analytical description of signal-signal and signal-noise interference with memory defined by the interplay of nonlinearity and dispersion. Also the conditional pdf of signal distortion, which captures non-circular complex multivariate symbol interactions, is derived providing the necessary platform for the analysis of channel statistics and capacity estimations in fibre optic links.