978 resultados para Multidrug-resistant organisms
Resumo:
The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.
Resumo:
AbstractObjective:In the present study, the authors investigated the in vitrobehavior of radio-resistant breast adenocarcinoma (MDA-MB-231) cells line and radiosensitive peripheral blood mononuclear cells (PBMC), as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy.Materials and Methods:The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed.Results:Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation.Conclusion:Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.
Resumo:
Chlamydial infections in koalas can cause life-threatening diseases leading to blindness and sterility. However, little is known about the systemic spread of chlamydiae in the inner organs of the koala, and data concerning related pathological organ lesions are limited. The aim of this study was to perform a thorough investigation of organs from 23 koalas and to correlate their histopathological lesions to molecular chlamydial detection. To reach this goal, 246 formalin-fixed and paraffin embedded organ samples from 23 koalas were investigated by histopathology, Chlamydiaceae real-time PCR and immunohistochemistry, ArrayTube Microarray for Chlamydiaceae species identification as well as Chlamydiales real-time PCR and sequencing. By PCR, two koalas were positive for Chlamydia pecorum whereas immunohistochemical labelling for Chlamydiaceae was detected in 10 tissues out of nine koalas. The majority of these (n=6) had positive labelling in the urogenital tract related to histopathological lesions such as cystitis, endometritis, pyelonephritis and prostatitis. Somehow unexpected was the positive labelling in the gastrointestinal tract including the cloaca as well as in lung and spleen indicating systemic spread of infection. Uncultured Chlamydiales were detected in several organs of seven koalas by PCR, and four of these suffered from plasmacytic enteritis of unknown aetiology. Whether the finding of Chlamydia-like organisms in the gastrointestinal tract is linked to plasmacytic enteritis is unclear and remains speculative. However, as recently shown in a mouse model, the gastrointestinal tract might play a role being the site for persistent chlamydial infections and being a source for reinfection of the genital tract.
Resumo:
Chlamydophila abortus and Waddlia chondrophila cause abortion in ruminants. We investigated the role of Parachlamydia acanthamoebae in bovine abortion. Results of immunohistochemical analyses were positive in 30 (70%) of 43 placentas from which Chlamydia-like DNA was amplified, which supports the role of Parachlamydia spp. in bovine abortion.
Resumo:
UNLABELLED: Whole-genome sequencing (WGS) of 228 isolates was used to elucidate the origin and dynamics of a long-term outbreak of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 228 (ST228) SCCmec I that involved 1,600 patients in a tertiary care hospital between 2008 and 2012. Combining of the sequence data with detailed metadata on patient admission and movement confirmed that the outbreak was due to the transmission of a single clonal variant of ST228, rather than repeated introductions of this clone into the hospital. We note that this clone is significantly more frequently recovered from groin and rectal swabs than other clones (P < 0.0001) and is also significantly more transmissible between roommates (P < 0.01). Unrecognized MRSA carriers, together with movements of patients within the hospital, also seem to have played a major role. These atypical colonization and transmission dynamics can help explain how the outbreak was maintained over the long term. This "stealthy" asymptomatic colonization of the gut, combined with heightened transmissibility (potentially reflecting a role for environmental reservoirs), means the dynamics of this outbreak share some properties with enteric pathogens such as vancomycin-resistant enterococci or Clostridium difficile. IMPORTANCE: Using whole-genome sequencing, we showed that a large and prolonged outbreak of methicillin-resistant Staphylococcus aureus was due to the clonal spread of a specific strain with genetic elements adapted to the hospital environment. Unrecognized MRSA carriers, the movement of patients within the hospital, and the low detection with clinical specimens were also factors that played a role in this occurrence. The atypical colonization of the gut means the dynamics of this outbreak may share some properties with enteric pathogens.
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.
Resumo:
Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.
Resumo:
Heterodera glycines and Helicotylenchus dihystera were the two most abundant plant-parasitic nematodes found in two H. glycines race 3-infested fields, Chapadão do Céu, MS and Campo Alegre, MG. These fields had been planted with resistant (R) and susceptible (S) plants to cyst nematodes. In the first field, soybean (Glycine max) FT-Cristalina (S) was susceptible to H. glycines but resistant to H. dihystera, while GOBR93 122243 (R) was just the opposite. In the second field, M-Soy 8400 (R) was more resistant to the spiral nematode than M-Soy8411 (S), but the resistance to the cyst nematode was not different between the two genotypes. The total abundance of nematodes was not different between the susceptible and resistant plants in the two fields, suggesting that H. dihystera and/or bacterial feeders and other trophic groups replaced the reduced abundance of the cyst nematodes in resistant plants. Bacterial feeders acted as a compensatory factor to plant-parasitic nematodes in ecological function. The populations of fungal feeders were higher in GOBR93 122243 (R) than in susceptible FT-Cristalina (S) in Chapadão do Céu, but lower in M-Soy 8400 (R) than in M-Soy 8411 (S) in Campo Alegre. This is being attributed to the different periods of soil samplings that were made at the florescent period in the first field, and at the final growing cycle in the second field. Only four nematodes, H. glycines, H. dihystera, Acrobeles sp. and Panagrolaimus sp. dominated the nematode resistant community GOBR93 122243 (R) in Chapadão do Céu, but dominance was shared by ten genera in Campo Alegre, which explains why the five diversity indexes (S, d, Ds, H' and T) were higher in resistant plants than in susceptible plants in field two.