873 resultados para Multi-scale modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concurrent software executes multiple threads or processes to achieve high performance. However, concurrency results in a huge number of different system behaviors that are difficult to test and verify. The aim of this dissertation is to develop new methods and tools for modeling and analyzing concurrent software systems at design and code levels. This dissertation consists of several related results. First, a formal model of Mondex, an electronic purse system, is built using Petri nets from user requirements, which is formally verified using model checking. Second, Petri nets models are automatically mined from the event traces generated from scientific workflows. Third, partial order models are automatically extracted from some instrumented concurrent program execution, and potential atomicity violation bugs are automatically verified based on the partial order models using model checking. Our formal specification and verification of Mondex have contributed to the world wide effort in developing a verified software repository. Our method to mine Petri net models automatically from provenance offers a new approach to build scientific workflows. Our dynamic prediction tool, named McPatom, can predict several known bugs in real world systems including one that evades several other existing tools. McPatom is efficient and scalable as it takes advantage of the nature of atomicity violations and considers only a pair of threads and accesses to a single shared variable at one time. However, predictive tools need to consider the tradeoffs between precision and coverage. Based on McPatom, this dissertation presents two methods for improving the coverage and precision of atomicity violation predictions: 1) a post-prediction analysis method to increase coverage while ensuring precision; 2) a follow-up replaying method to further increase coverage. Both methods are implemented in a completely automatic tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trammel net discards in four southern European areas were considerable, with a total of 137 species (79.7% of the total) discarded 65, 105, 46 and 32 species in the Basque country (Spain), Algarve (Portugal), Gulf of Cadiz (Spain) and Cyclades islands (Greece), respectively. The overall discard rate in terms of catch numbers ranged from 15% for the Cyclades to 49% for the Algarve, with the high discard rate for the latter due largely to small pelagic fishes. Discards in the four areas consisted mainly of Trisopterus luscus (Basque country), Scomber japonicus (Algarve), Torpedo torpedo (Cadiz) and Sardina pilchardus (all three areas), and Diplodus annularis in the Cyclades. Strong seasonal variation in discarding was found, reflecting differences in metiers and the versatility of trammel nets as a gear. Discarding, both in terms of numbers of species and individuals decreased with increasing inner panel mesh size. The main reasons for discarding were: (1) species of no or low commercial value (e.g. Scomber japonicus; Torpedo torpedo), (2) commercial species that were damaged or spoiled (e.g. Merluccius merluccius), (3) undersized commercial species (e.g. Lophius piscatorius), and (4) species of commercial value but not caught in sufficient quantities to warrant sale (e.g. Sardina pilchardus). A decrease in soak time together with the appropriate choice of mesh sizes could contribute to a reduction in discarding and to improved sustainability and use of scarce resources in the small-scale, inshore multi-species fisheries of southern Europe. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fishing trials with monofilament gill nets and longlines using small hooks were carried out in Algarve waters (southern Portugal) over a one-year period. Four hook sizes of "Mustad" brand, round bent, flatted sea hooks (Quality 2316 DT, numbers 15, 13, 12 and 11) and four mesh sizes of 25, 30, 35 and 40 mm (bar length) monofilament gill nets were used. Commercially valuable sea breams dominated the longline catches while small pelagics were relatively more important in the gill nets. Significant differences in the catch size frequency distributions of the two gears were found for all the most important species caught by both gears (Boops boops, Diplodus bellottii, Diplodus vulgaris, Pagellus acarne, Pagellus erythrinus, Spondyiosoma cantharus, Scomber japonicus and Scorpaena notata), with longlines catching larger fish and a wider size range than nets. Whereas longline catch size frequency distributions for most species for the different hook sizes were generally highly overlapped, suggesting little or no differences in size selectivity, gill net catch size frequency distributions clearly showed size selection. A variety of models were fitted to the gill net and hook data using the SELECT method, while the parameters of the logistic model were estimated by maximum likelihood for the longline data. The bi-normal model gave the best fits for most of the species caught with gill nets, while the logistic model adequately described hook selectivity. The results of this study show that the two static gears compete for many of the same species and have different impacts in terms of catch composition and size selectivity. This information will I;e useful for the improved management of these small-scale fisheries in which many different gears compete for scarce resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If marine management policies and actions are to achieve long-term sustainable use and management of the marine environment and its resources, they need to be informed by data giving the spatial distribution of seafloor habitats over large areas. Broad-scale seafloor habitat mapping is an approachwhich has the benefit of producing maps covering large extents at a reasonable cost. This approach was first investigated by Roff et al. (2003), who, acknowledging that benthic communities are strongly influenced by the physical characteristics of the seafloor, proposed overlaying mapped physical variables using a geographic information system (GIS) to produce an integrated map of the physical characteristics of the seafloor. In Europe the method was adapted to the marine section of the EUNIS (European Nature Information System) classification of habitat types under the MESH project, andwas applied at an operational level in 2011 under the EUSeaMap project. The present study compiled GIS layers for fundamental physical parameters in the northeast Atlantic, including (i) bathymetry, (ii) substrate type, (iii) light penetration depth and (iv) exposure to near-seafloor currents andwave action. Based on analyses of biological occurrences, significant thresholds were fine-tuned for each of the abiotic layers and later used in multi-criteria raster algebra for the integration of the layers into a seafloor habitat map. The final result was a harmonised broad-scale seafloor habitat map with a 250 m pixel size covering four extensive areas, i.e. Ireland, the Bay of Biscay, the Iberian Peninsula and the Azores. The map provided the first comprehensive perception of habitat spatial distribution for the Iberian Peninsula and the Azores, and fed into the initiative for a pan- European map initiated by the EUSeaMap project for Baltic, North, Celtic and Mediterranean seas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral thesis focuses on the study of historical shallow landslide activity over time in response to anthropogenic forcing on land use, through the compilation of multi-temporal landslide inventories. The study areas, located in contrasting settings and characterized by different history of land-cover changes, include the Sillaro River basin (Italy) and the Tsitika and Eve River basins (coastal British Columbia). The Sillaro River basin belongs to clay-dominated settings, characterized by extensive badland development, and dominated by earth slides and earthflows. Here, forest removal began in the Roman period and has been followed by agricultural land abandonment and natural revegetation in recent time. By contrast, the Tsitika-Eve River basins are characterized by granitic and basaltic lithologies, and dominated by debris slides, debris flows and debris avalanches. In this setting, anthropogenic impacts started in 1960’s and have involved logging operation. The thesis begins with an introductory chapter, followed by a methodological section, where a multi-temporal mapping approach is proposed and tested at four landslide sites of the Sillaro River basin. Results, in terms of inventory completeness in time and space, are compared against the existing region-wide Emilia-Romagna inventory. This approach is then applied at the Sillaro River basin scale, where the multi-temporal inventory obtained is used to investigate the landslide activity in relation to historical land cover changes across geologic domains and in relation to hydro-meteorological forcing. Then, the impact of timber harvesting and road construction on landslide activity and sediment transfer in the Tsitika-Eve River basins is investigated, with a focus on the controls that interactions between landscape morphometry and cutblock location may have on landslide size-frequency relations. The thesis ends with a summary of the main findings and discusses advantages and limitations associated with the compilation of multi-temporal inventories in the two settings during different periods of human-driven, land-cover dynamics.