859 resultados para Multi-objective optimization problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis considera dos tipos de aplicaciones del diseño óptico: óptica formadora de imagen por un lado, y óptica anidólica (nonimaging) o no formadora de imagen, por otro. Las ópticas formadoras de imagen tienen como objetivo la obtención de imágenes de puntos del objeto en el plano de la imagen. Por su parte, la óptica anidólica, surgida del desarrollo de aplicaciones de concentración e iluminación, se centra en la transferencia de energía en forma de luz de forma eficiente. En general, son preferibles los diseños ópticos que den como resultado sistemas compactos, para ambos tipos de ópticas (formadora de imagen y anidólica). En el caso de los sistemas anidólicos, una óptica compacta permite tener costes de producción reducidos. Hay dos razones: (1) una óptica compacta presenta volúmenes reducidos, lo que significa que se necesita menos material para la producción en masa; (2) una óptica compacta es pequeña y ligera, lo que ahorra costes en el transporte. Para los sistemas ópticos de formación de imagen, además de las ventajas anteriores, una óptica compacta aumenta la portabilidad de los dispositivos, que es una gran ventaja en tecnologías de visualización portátiles, tales como cascos de realidad virtual (HMD del inglés Head Mounted Display). Esta tesis se centra por tanto en nuevos enfoques de diseño de sistemas ópticos compactos para aplicaciones tanto de formación de imagen, como anidólicas. Los colimadores son uno de los diseños clásicos dentro la óptica anidólica, y se pueden utilizar en aplicaciones fotovoltaicas y de iluminación. Hay varios enfoques a la hora de diseñar estos colimadores. Los diseños convencionales tienen una relación de aspecto mayor que 0.5. Con el fin de reducir la altura del colimador manteniendo el área de iluminación, esta tesis presenta un diseño de un colimador multicanal. En óptica formadora de imagen, las superficies asféricas y las superficies sin simetría de revolución (o freeform) son de gran utilidad de cara al control de las aberraciones de la imagen y para reducir el número y tamaño de los elementos ópticos. Debido al rápido desarrollo de sistemas de computación digital, los trazados de rayos se pueden realizar de forma rápida y sencilla para evaluar el rendimiento del sistema óptico analizado. Esto ha llevado a los diseños ópticos modernos a ser generados mediante el uso de diferentes técnicas de optimización multi-paramétricas. Estas técnicas requieren un buen diseño inicial como punto de partida para el diseño final, que será obtenido tras un proceso de optimización. Este proceso precisa un método de diseño directo para superficies asféricas y freeform que den como resultado un diseño cercano al óptimo. Un método de diseño basado en ecuaciones diferenciales se presenta en esta tesis para obtener un diseño óptico formado por una superficie freeform y dos superficies asféricas. Esta tesis consta de cinco capítulos. En Capítulo 1, se presentan los conceptos básicos de la óptica formadora de imagen y de la óptica anidólica, y se introducen las técnicas clásicas del diseño de las mismas. El Capítulo 2 describe el diseño de un colimador ultra-compacto. La relación de aspecto ultra-baja de este colimador se logra mediante el uso de una estructura multicanal. Se presentará su procedimiento de diseño, así como un prototipo fabricado y la caracterización del mismo. El Capítulo 3 describe los conceptos principales de la optimización de los sistemas ópticos: función de mérito y método de mínimos cuadrados amortiguados. La importancia de un buen punto de partida se demuestra mediante la presentación de un mismo ejemplo visto a través de diferentes enfoques de diseño. El método de las ecuaciones diferenciales se presenta como una herramienta ideal para obtener un buen punto de partida para la solución final. Además, diferentes técnicas de interpolación y representación de superficies asféricas y freeform se presentan para el procedimiento de optimización. El Capítulo 4 describe la aplicación del método de las ecuaciones diferenciales para un diseño de un sistema óptico de una sola superficie freeform. Algunos conceptos básicos de geometría diferencial son presentados para una mejor comprensión de la derivación de las ecuaciones diferenciales parciales. También se presenta un procedimiento de solución numérica. La condición inicial está elegida como un grado de libertad adicional para controlar la superficie donde se forma la imagen. Basado en este enfoque, un diseño anastigmático se puede obtener fácilmente y se utiliza como punto de partida para un ejemplo de diseño de un HMD con una única superficie reflectante. Después de la optimización, dicho diseño muestra mejor rendimiento. El Capítulo 5 describe el método de las ecuaciones diferenciales ampliado para diseños de dos superficies asféricas. Para diseños ópticos de una superficie, ni la superficie de imagen ni la correspondencia entre puntos del objeto y la imagen pueden ser prescritas. Con esta superficie adicional, la superficie de la imagen se puede prescribir. Esto conduce a un conjunto de tres ecuaciones diferenciales ordinarias implícitas. La solución numérica se puede obtener a través de cualquier software de cálculo numérico. Dicho procedimiento también se explica en este capítulo. Este método de diseño da como resultado una lente anastigmática, que se comparará con una lente aplanática. El diseño anastigmático converge mucho más rápido en la optimización y la solución final muestra un mejor rendimiento. ABSTRACT We will consider optical design from two points of view: imaging optics and nonimaging optics. Imaging optics focuses on the imaging of the points of the object. Nonimaging optics arose from the development of concentrators and illuminators, focuses on the transfer of light energy, and has wide applications in illumination and concentration photovoltaics. In general, compact optical systems are necessary for both imaging and nonimaging designs. For nonimaging optical systems, compact optics use to be important for reducing cost. The reasons are twofold: (1) compact optics is small in volume, which means less material is needed for mass-production; (2) compact optics is small in size and light in weight, which saves cost in transportation. For imaging optical systems, in addition to the above advantages, compact optics increases portability of devices as well, which contributes a lot to wearable display technologies such as Head Mounted Displays (HMD). This thesis presents novel design approaches of compact optical systems for both imaging and nonimaging applications. Collimator is a typical application of nonimaging optics in illumination, and can be used in concentration photovoltaics as well due to the reciprocity of light. There are several approaches for collimator designs. In general, all of these approaches have an aperture diameter to collimator height not greater than 2. In order to reduce the height of the collimator while maintaining the illumination area, a multichannel design is presented in this thesis. In imaging optics, aspheric and freeform surfaces are useful in controlling image aberrations and reducing the number and size of optical elements. Due to the rapid development of digital computing systems, ray tracing can be easily performed to evaluate the performance of optical system. This has led to the modern optical designs created by using different multi-parametric optimization techniques. These techniques require a good initial design to be a starting point so that the final design after optimization procedure can reach the optimum solution. This requires a direct design method for aspheric and freeform surface close to the optimum. A differential equation based design method is presented in this thesis to obtain single freeform and double aspheric surfaces. The thesis comprises of five chapters. In Chapter 1, basic concepts of imaging and nonimaging optics are presented and typical design techniques are introduced. Readers can obtain an understanding for the following chapters. Chapter 2 describes the design of ultra-compact collimator. The ultra-low aspect ratio of this collimator is achieved by using a multichannel structure. Its design procedure is presented together with a prototype and its evaluation. The ultra-compactness of the device has been approved. Chapter 3 describes the main concepts of optimizing optical systems: merit function and Damped Least-Squares method. The importance of a good starting point is demonstrated by presenting an example through different design approaches. The differential equation method is introduced as an ideal tool to obtain a good starting point for the final solution. Additionally, different interpolation and representation techniques for aspheric and freeform surface are presented for optimization procedure. Chapter 4 describes the application of differential equation method in the design of single freeform surface optical system. Basic concepts of differential geometry are presented for understanding the derivation of partial differential equations. A numerical solution procedure is also presented. The initial condition is chosen as an additional freedom to control the image surface. Based on this approach, anastigmatic designs can be readily obtained and is used as starting point for a single reflective surface HMD design example. After optimization, the evaluation shows better MTF. Chapter 5 describes the differential equation method extended to double aspheric surface designs. For single optical surface designs, neither image surface nor the mapping from object to image can be prescribed. With one more surface added, the image surface can be prescribed. This leads to a set of three implicit ordinary differential equations. Numerical solution can be obtained by MATLAB and its procedure is also explained. An anastigmatic lens is derived from this design method and compared with an aplanatic lens. The anastigmatic design converges much faster in optimization and the final solution shows better performance.