988 resultados para Movement sensors
Resumo:
1–3, which contain a fluorophore and two proton receptors with opposite PET (photoinduced electron transfer) characteristics, only display strong fluorescence within a pH window whose position and width are tunable.
Resumo:
N-(aminoalkyl)-4-chloronaphthalene-
1,8-dicarboximides 1, N-
(aminoalkyl)-4-acetamidonaphthalene-
1,8-dicarboximides 3 and N,N'-bis(aminoalkyl)-
perylene-3,4:9,10-tetracarboxydiimides
4 show good fluorescent off ±
on switching in aqueous alcoholic solution
with protons as required for fluorescent
PET sensor design. The excitation
wavelengths lie in the ultraviolet
(lmaxˆ345 and 351 nm) for 1 and 3 and
in the blue-green (lmaxˆ528, 492 and
461 nm) for 4; the emission wavelengths
lie in the violet (lmaxˆ408 nm) for 1, in
the blue (lmaxˆ474 nm) for 3 and in the
yellow-orange (lmaxˆ543 and 583 nm)
for 4. Compound 4b shows substantial
fluorescence enhancement with protons
when immobilized in a poly(vinylchloride)
matrix, provided that 2-nitrophenyloctyl
ether plasticizer and potassium
tetrakis(4-chlorophenyl)borate additive
are present to prevent dye crystallization
and to facilitate proton diffusion
into the membrane, respectively.
Resumo:
This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.
Resumo:
The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.
Resumo:
Na+ near membranes controls our nerve signals, besides several other crucial bioprocesses. We demonstrate that fluorescent PET (photoinduced electron transfer) sensor molecules target Na+ in nanospaces near micellar membranes with excellent discrimination against H+. They find that Na+ near anionic micelles is concentrated by factors of upto 160. Sensor molecules which are not held tight to the micelle surface find a Na+ amplification factor of 8 only. These findings are strengthened by the employment of control compounds whose PET processes are permanently ‘on’ or permanently ‘off’.
Resumo:
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. Existing systems are based on electrical resistance strain gauges which can be prohibitive in achieving data for long term monitoring of rural bridges due to power consumption. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined. New methods of axle detection for B-WIM were investigated and verified in the field.
Resumo:
In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.
Resumo:
This article will analyze the interplay between capital movements and trade
in services as structured in World Trade Organization (WTO) law, and it will
assess the implications of the capital account liberalization for the freedom of
WTO Members to pursue their economic policies. Although the movement
of capital is largely confined to the domain of international financial or monetary
policy, it is regulated by WTO law due to its role in the process of
financial services liberalization, which generally requires liberalized capital
flows. From a legal perspective, the interplay between capital movements
and trade in services requires striking a delicate balance between the right
of market access and the parallel right of economic stability. Indeed, a liberalized
regime for capital movements could pose serious stability problems
during times of crisis. For this reason, it is necessary that Members are able
to derogate from their obligations and adopt emergency measures.
Regulating the movement of capital in the General Agreement on Trade in
Services (GATS) requires stretching the regulatory oversight of WTO law
over different aspects of international economic policy. Indeed, capital movements are a fundamental component of the balance of payments and have a
major role in shaping monetary, fiscal, and financial policies. This article will
analyze how the discipline provided by the GATS on capital movements will
affect not only trade in services, but also the Members’ policy space on
monetary and fiscal policy. The article will conclude that while the GATS offers enough policy space for the maintenance of financial stability, it does
not fully take into consideration the need of Members to control capital
movements in order to conduct monetary policies.
Resumo:
BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.
DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.
CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.
Resumo:
BACKGROUND: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to 'fill in the gaps' between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.
RESULTS: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.
CONCLUSIONS: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.