945 resultados para Moretti, Franco: Graphs, Maps, Trees. Abstract models for a literaty theory
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
We find some new examples to show nonuniquence for the heat flow of harmonic maps where weak solutions satisfy the same monotonicity property.
Resumo:
Wildlife-habitat models are an important tool in wildlife management toda?, and by far the majority of these predict aspects of species distribution (abundance or presence) as a proxy measure of habitat quality. Unfortunately, few are tested on independent data, and of those that are, few show useful predictive st;ill. We demonstrate that six critical assumptions underlie distribution based wildlife-habitat models, all of which must be valid for the model to predict habitat quality. We outline these assumptions in a mete-model, and discuss methods for their validation. Even where all sis assumptions show a high level of validity, there is still a strong likelihood that the model will not predict habitat quality. However, the meta-model does suggest habitat quality can be predicted more accurately if distributional data are ignored, and variables more indicative of habitat quality are modelled instead.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].
Resumo:
Two studies examined relations between groups (humanities and math-science students) that implicitly or explicitly share a common superordinate category (university student). In Experiment 1, 178 participants performed a noninteractive decision-making task during which category salience was manipulated in a 2 (superordinate category salience) x 2 (subordinate category salience) between-groups design. Consistent with the mutual intergroup differentiation model, participants for whom both categories were salient exhibited the lowest levels of bias, whereas bias was strongest when the superordinate category alone was made salient. This pattern of results was replicated in Experiment 2 (N = 135). In addition, Experiment 2 demonstrated that members of subgroups that are nested within a superordinate category are more sensitive to how the superordinate category is represented than are members of subgroups that extend beyond the boundaries of the superordinate category.
Resumo:
In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.
Resumo:
A method is presented for including path propagation effects into models of radiofrequency resonators for use in magnetic resonance imaging. The method is based on the use of Helmholtz retarded potentials and extends our previous work on current density models of resonators based on novel inverse finite Hilbert transform solutions to the requisite integral equations. Radiofrequency phase retardation effects are most pronounced at high field strengths (frequencies) as are static field perturbations due to the magnetic materials in the resonators themselves. Both of these effects are investigated and a novel resonator structure presented for use in magnetic resonance microscopy.
Resumo:
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.
Resumo:
Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.