912 resultados para Models of Multivariate Regression
Resumo:
This paper applies two measures to assess spillovers across markets: the Diebold Yilmaz (2012) Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from markets, plus net spillovers. The key difference between the measures is that the spillover index captures an average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010. Our modelling includes leverage and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months.
Resumo:
In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Resumo:
In this work a fast method for the determination of the total sugar levels in samples of raw coffee was developed using the near infrared spectroscopy technique and multivariate regression. The sugar levels were initially obtained using gravimety as the reference method. Later on, the regression models were built from the near infrared spectra of the coffee samples. The original spectra were pre-treated according to the Kubelka-Munk transformation and multiplicative signal correction. The proposed analytical method made possible the direct determination of the total sugar levels in the samples with an error lower by 8% with respect to the conventional methodology.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65), both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm) was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05). Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width); 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width); 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width) and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width). There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
Resumo:
Background & aims. This study aimed to determine the relationship between blood lead concentrations and calcium, iron and vitamin C dietary intakes of pregnant women. Methods. Included in the study were 55 women admitted to a hospital, for delivery, from June to August 2002. A food frequency questionnaire was applied to determine calcium, iron and vitamin C intakes, and a general questionnaire to obtain data on demographic-socioeconomic condition, obstetric history, smoking habit, and alcohol intake. Blood lead and haemoglobin were determined, respectively, by atomic absorption spectrometry and by the haemoglobinometer HemoCue®. Multiple linear regression models were used to determine the relationship between blood lead and calcium, iron and vitamin C intakes, and haemoglobin levels, controlling for confounders. Results. The final model of the regression analysis detected an inverse relationship between blood lead and age of the women (p=0.011), haemoglobin (p=0.001), vitamin C (p=0.012), and calcium intake (p<0.001) (R2=0.952). One hundred percent, 98.2% and 43.6% of the women were below the adequate intake (AI) for calcium, and below the recommended dietary allowances (RDA) for iron, and vitamin C, respectively. Conclusion. Despite the small sample size, the results of this study suggest that maternal age, haemoglobin, vitamin C intake, and calcium intake may interfere with blood concentrations of lead
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The antioxidant activity of natural and synthetic compounds was evaluated using five in vitro methods: ferric reducing/antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydradzyl (DPPH), oxygen radical absorption capacity (ORAL), oxidation of an aqueous dispersion of linoleic acid accelerated by azo-initiators (LAOX), and oxidation of a meat homogenate submitted to a thermal treatment (TBARS). All results were expressed as Trolox equivalents. The application of multivariate statistical techniques suggested that the phenolic compounds (caffeic acid, carnosic acid, genistein and resveratrol), beyond their high antioxidant activity measured by the DPPH, FRAP and TBARS methods, showed the highest ability to react with the radicals in the ORAC methodology, compared to the other compounds evaluated in this study (ascorbic acid, erythorbate, tocopherol, BHT, Trolox, tryptophan, citric acid, EDTA, glutathione, lecithin, methionine and tyrosine). This property was significantly correlated with the number of phenolic rings and catecholic structure present in the molecule. Based on a multivariate analysis, it is possible to select compounds from different clusters and explore their antioxidant activity interactions in food products.
Resumo:
Mercury (Hg) exposure causes health problems that may result from increased oxidative stress and matrix metalloproteinase (MMP) levels. We investigated whether there is an association between the circulating levels of MMP-2, MMP-9, their endogenous inhibitors (the tissue inhibitors of metalloproteinases; TIMPs) and the circulating Hg levels in 159 subjects environmentally exposed to Hg. Blood and plasma Hg were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA respectively. Thiobarbituric acid-reactive species (TBARS) were measured in plasma to assess oxidative stress. Selenium (Se) levels were determined by ICP-MS because it is an antioxidant. The relations between bioindicators of Hg and the metalloproteinases levels were examined using multivariate regression models. While we found no relation between blood or plasma Hg and MMP-9, plasma Hg levels were negatively associated with TIMP-1 and TIMP-2 levels, and thereby with increasing MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, thus indicating a positive association between plasma Hg and circulating net MMP-9 and MMP-2 activities. These findings provide a new insight into the possible biological mechanisms of Hg toxicity, particularly in cardiovascular diseases.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.
Resumo:
The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.