938 resultados para Mobile Service
Resumo:
Australia faces an ongoing challenge recruiting professionals to staff essential human services in rural and remote communities. This paper identifies the private limits to the implicit service contract between professions and such client populations. These become evident in how private solutions to competing priorities within professional families inform their selective mobility and thus create the public problem for such communities. The paper reports on a survey of doctors, nurses, teachers and police with responsibility for school-aged children in Queensland that plumbed the strength of neoliberal values in their educational strategy and their commitment to the public good in career decisions. The quantitative analysis suggested that neoliberal values are not necessarily opposed to a commitment to the public good. However, the qualitative analysis of responses to hypothetical career opportunities in rural and remote communities drew out the multiple intertwined spatial and temporal limits to such public service, highlighting the priority given to educational strategy in these families’ deliberations. This private/public nexus poses a policy problem on multiple institutional fronts.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This study explores how explicit transit quality of services (TQoS) measures including service frequency, service span, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership using a case study city of Brisbane, Australia. The primary hypothesis tested was that bus ridership is higher within suburbs with high transit quality of service than suburbs that have limited service quality. Using Multiple Linear Regression (MLR) this study identifies a strong positive relationship between route intensity (bus-km/h-km2) and bus ridership, indicating that increasing both service frequency and spatial route density correspond to higher bus ridership. Additionally, travel time ratio (in-vehicle transit travel time to in-vehicle auto travel time) is also found to have significant negative association with ridership within a suburb, reflecting a decline in transit use with increased travel time ratio. Conversely, topographic grade and service span are not found to exert any significant impact on bus ridership in a suburb. Our study findings enhance the fundamental understanding of traveller behaviour which is informative to urban transportation policy, planning and provision.
Resumo:
This study investigates whether an Australian city’s suburbs having high transit Quality of Service (QoS) are associated with higher transit ridership than those having low transit QoS •We explore how QoS measures including service frequency, service span, service coverage, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership •We applied Multiple Linear Regression (MLR) to examine the relationship between QoS and ridership •Its outcomes enhance our understanding of transit user behavior, which is informative to urban transportation policy, planning, and provision
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study