908 resultados para Minimum tillage
Resumo:
The minimum vital of drinking water for vulnerable people isprotected by the Colombian Constitutional Jurisprudence,locally and nationally. The Constitutional Court has created asolid jurisprudential line on the right to water in relation to thesuspension of water supply service for the customer’s failure topay for the service; this Court has also defined the conditionsnecessary for the companies to refrain from suspending serviceand the minimum amount necessary for survival. Compliance withthese sentences has been limited to the orders pronounced to thebenefit of the company that provides such service, including theexecution of payment agreements for accessing the water supply.The implementation of the free minimum vital of drinking water inColombia has been defined through targeting and requirements thatare set only to benefit market laws, such as payment agreements,except for Bogota that, from the point of view of human rights,has proposed the respect for the minimum vital of drinking waterfor all social strata.
Resumo:
L’objectif de ce mémoire est d’identifier les déterminants de la générosité de l’aide sociale au Canada. Plus précisément, quels sont les facteurs qui expliquent les variations entre les montants d’aide sociale entre les provinces canadiennes de 1990 à 2009? Pourquoi le Québec, la Saskatchewan et Terre-Neuve-Labrador sont plus généreux que le Nouveau-Brunswick et l’Alberta? L’analyse de ces 10 politiques distinctes est produite à partir d’un cadre théorique quadripartite qui inclut le rôle des acteurs (partis politiques et syndicats), les traits institutionnels (dépenses publiques et engagement à la redistribution), les contraintes budgétaires (taux d’assistance sociale, dette, économie) et le rôle du gouvernement fédéral (montant et type de transfert). Les résultats démontrent que l’aide sociale est une politique hautement dépendante au sentier et incrémentale. Des transferts fédéraux à coût partagé et un taux de syndicalisation élevé sont des facteurs qui exercent une influence positive sur la générosité des provinces. À l’inverse, les partis de droite ainsi qu’une situation budgétaire difficile ont un impact négatif. Il faut noter que la richesse économique des provinces n’est pas associée à une plus grande générosité de l’aide sociale, au contraire les prestations d’aide sociale étaient plus faibles en 2009 qu’en 1990 malgré un PIB qui a presque doublé. De plus, des provinces riches comme l’Alberta et la Colombie-Britannique sont peu généreuses. Finalement, il faut noter que les partis politiques de gauche n’ont pas l’effet positif escompté sur la générosité des politiques de revenu minimum.
Resumo:
Background and aim: Endoscopic incision is an alternative method for refractory esophageal strictures; however, little is known about its long-term efficacy. The aim of the study is to assess the long-term outcomes of endoscopic incision for treating refractory esophageal anastomotic strictures. Methods: Between September 2011 and September 2014, 13 patients with refractory esophageal anastomotic strictures were treated with endoscopic incision. Their clinical data were retrospectively collected to evaluate the efficacy and safety of the technique. Results: All the 13 patients underwent the procedure successfully with median operation duration of 15 minutes. A total of 27 sessions were necessary to maintain lumen patency until September 2015, and 7 patients needed retreatment. The symptoms relieved in all the cases, and the median dysphagia score decreased from 4 to 1 during a median follow-up of 24 months. The median diameter of stricture was enlarged from 4 mm to 12 mm. As a short-term effect, dysphagia symptoms improved in 100% (13/13), 84.6% (11/13) and 76.9% (10/13) of the patients one, three and six months after a single treatment. As long-term effect, the dysphagia improved in 61.5% (8/13), 63.6% (7/11) and 60% (6/10) of the patients 12, 18 and 24 months after a single treatment. Conclusions: The efficacy of endoscopic incision is favorable in the short term. However, retreatment is needed to maintain the long-term lumen patency for parts of the patients.
Resumo:
Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.
Resumo:
Cover title.
Resumo:
The selection of the optimal operating conditions for an industrial acrylonitrile recovery unit was conducted by the systematic application of the response surface methodology, based on the minimum energy consumption and products specifications as process constraints. Unit models and plant simulation were validated against operating data and information. A sensitivity analysis was carried out in order to identify the set of parameters that strongly affect the trajectories of the system while keeping products specifications. The results suggest that energy savings of up to 10% are possible by systematically adjusting operating conditions.
Resumo:
International audience
Resumo:
Tillage systems strongly affect nutrient transformations and plant availability. The objective of this study was to assess the nitrate dynamic in soil solution in different tillage systems with use of plant cocktail as green manure in fertilized melon (Cucumis melon) in Brazilian semi-arid. The treatments were arranged in four blocks in a split-plot design and included three types of cover crops and two tillage systems, conventional tillage (CT) and no-till (NT). The data showed no strong effect of plant cocktails composition on NO3-N dynamic in the soil. Mean concentration of NO3-N ranged from 19.45 mg L-1 at 15 cm to 60.16 mg L-1 at 50 cm soil depth, indicating high leachability. No significant differences were observed between NT and CT treatments for 15 cm depth. The high soil moisture content at ~ 30 cm depth concentrated high NO3-N in all treatments, mean of 54.27 mg L-1 to NT and 54.62 mg L-1 to CT. The highest NO3-N concentration was observed at 50 cm depth in TC (60.16 mg L-1). High concentration of NO3-N in CT may be attributed to increase in decomposition of soil organic matter and crop residues incorporated into the soil.
Resumo:
Materials with new visual appearances have emerged over the last few years. In the automotive industry in particular there is a growing interest in materials with new effect finishes, such as metallic, pearlescent, sparkle, and graininess effects. Typically, for solid colours the mean of three measurements with repetitions is sufficient to obtain a representative measurement for colour characterisation. However, gonio-apparent panels have non-homogeneous colours, and there are no studies that recommend the minimum number of repetitions for colour, sparkle, and graininess characterisation of this type of panel. We assume that colour panels incorporating special-effect pigments in their colour recipes will require a higher minimum number of measurements than solid colour panels. Therefore, the purpose of this study is to verify this assumption by using a multiangle BYK-mac spectrophotometer, given that it is currently the only commercial device that can measure colour, sparkle, and graininess values simultaneously. In addition, a possible methodology is given for establishing the minimum number of measurements when characterising gonio-apparent materials using a specific instrument, able to be implemented in future instruments when determining multiple appearance attributes (colour, gloss, sparkle, etc.) for many coloration technologies. Thus, we studied the minimum number of measurements needed to characterise the colour, sparkle, and graininess of three types of sample with solid, metallic, and pearlescent coatings respectively. Twenty measurements were made at twenty random positions (different target areas) of 90 samples. The minimum number of measurements for all these variables was determined on the basis of the point at which the cumulative mean value became constant. Thus, applying new statistical tools, it is clearly shown that metallic and pearlescent panels require more colour measurements than solid panels, in particular when geometries are being measured in a specular direction. As regards texture (sparkle and graininess), more measurements are needed for graininess than for sparkle, and more for metallic panels than for pearlescent panels.
Resumo:
Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.
Resumo:
As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding), maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping systems involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.
Resumo:
The supply side of the food security engine is the way we farm. The current engine of conventional tillage farming is faltering and needs to be replaced. This presentation will address supply side issues of agriculture to meet future agricultural demands for food and industry using the alternate no-till Conservation Agriculture (CA) paradigm (involving no-till farming with mulch soil cover and diversified cropping) that is able to raise productivity sustainably and efficiently, reduce inputs, regenerate degraded land, minimise soil erosion, and harness the flow of ecosystem services. CA is an ecosystems approach to farming capable of enhancing not only the economic and environmental performance of crop production and land management, but also promotes a mindset change for producing ‘more from less’, the key attitude towards sustainable production intensification. CA is now spreading globally in all continents at an annual rate of 10 Mha and covers some 157 Mha of cropland. Today global agriculture produces enough food to feed three times the current population of 7.21 billion. In 1976, when the world population was 4.15 billion, world food production far exceeded the amount necessary to feed that population. However, our urban and industrialised lifestyle leads to wastage of food of some 30%-40%, as well as waste of enormous amount of energy and protein while transforming crop-based food into animal-derived food; we have a higher proportion of people than ever before who are obese; we continue to degrade our ecosystems including much of our agricultural land of which some 400 Mha is reported to be abandoned due to severe soil and land degradation; and yields of staple cereals appear to have stagnated. These are signs of unsustainability at the structural level in the society, and it is at the structural level, for both supply side and demand side, that we need transformed mind sets about production, consumption and distribution. CA not only provides the possibility of increased crop yields for the low input smallholder farmer, it also provides a pro-poor rural and agricultural development model to support agricultural intensification in an affordable manner. For the high output farmer, it offers greater efficiency (productivity) and profit, resilience and stewardship. For farming anywhere, it addresses the root causes of agricultural land degradation, sub-optimal ecological crop and land potentials or yield ceilings, and poor crop phenotypic expressions or yield gaps. As national economies expand and diversify, more people become integrated into the economy and are able to access food. However, for those whose livelihoods continue to depend on agriculture to feed themselves and the rest of the world population, the challenge is for agriculture to produce the needed food and raw material for industry with minimum harm to the environment and the society, and to produce it with maximum efficiency and resilience against abiotic and biotic stresses, including those arising from climate change. There is growing empirical and scientific evidence worldwide that the future global supplies of food and agricultural raw materials can be assured sustainably at much lower environmental and economic cost by shifting away from conventional tillage-based food and agriculture systems to no-till CA-based food and agriculture systems. To achieve this goal will require effective national and global policy and institutional support (including research and education).
Resumo:
In a recent paper [1] Reis showed that both the principles of extremum of entropy production rate, which are often used in the study of complex systems, are corollaries of the Constructal Law. In fact, both follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. In this paper it is shown how the so-called principle of "minimum energy expenditure" which is often used as the basis for explaining many morphologic features in biologic systems, and also in inanimate systems, is also a corollary of Bejan's Constructal Law [2]. Following the general proof some cases namely, the scaling laws of human vascular systems and river basins are discussed as illustrations from the side of life, and inanimate systems, respectively.
Resumo:
2015
Resumo:
ABSTRACT: The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.