927 resultados para Minimum Mean Square Error of Intensity Distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed target tracking in wireless sensor networks (WSN) is an important problem, in which agreement on the target state can be achieved using conventional consensus methods, which take long to converge. We propose distributed particle filtering based on belief propagation (DPF-BP) consensus, a fast method for target tracking. According to our simulations, DPF-BP provides better performance than DPF based on standard belief consensus (DPF-SBC) in terms of disagreement in the network. However, in terms of root-mean square error, it can outperform DPF-SBC only for a specific number of consensus iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influencia de cereal principal y el tamaño medio de partícula de la dieta sobre el desempeño productivo y calidad de los huevos de las gallinas marrones para puesta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valoración de la transferencia temporal de los modelos de distribución de especies para su aplicación en nuestros días utilizando datos paleobotánicos Corilus avellana y Alnus glutinosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article the network configuration for fulfillment and distribution of online orders of two British retailers is analyzed and compared. For this purpose, it is proposed a conceptual framework that consists of the key following aspects: network configuration, transportation management and location of demand. As a result is not obvious to determine the ideal centralization degree in each case. Finally, it is suggested the future development of an analytic tool that helps to choose the most appropriate model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entre os vários fatores que contribuem para a produção de uma cultura de milho, a distribuição vertical dos semeadores avaliada através da localização da semente em profundidade é um fator-chave, especialmente na técnica de sementeira direta. Simultaneamente, dada a complexidade dos ecossistemas naturais e agrícolas em sistemas de agricultura de conservação, a gestão diferenciada e localizada das parcelas assume um importante papel na análise e gestão da variabilidade das propriedades do solo e estabelecimento das culturas, nomeadamente utilizando informação geo referenciada e tecnologia expedita. Assim, o principal objetivo desta Tese foi a avaliação em culturas de milho da variabilidade espacial da localização de semente em profundidade e estabelecimento da cultura em sementeira direta usando sistemas convencionais de controlo de profundidade, tendo-se comparado com diferentes sistemas de mobilização e recorrendo a tecnologias de agricultura de precisão. Os ensaios decorreram na região Mediterrânea do Alentejo, em propriedades agrícolas no decorrer das campanhas de 2010, 2011, 2012 e 2015 em 6 diferentes campos experimentais. O trabalho experimental consistiu em ensaios com avaliações in loco do solo e cultura, consumo de combustível das operações e deteção remota. Os resultados obtidos indicam que não só o sistema de mobilização afetou a localização da semente em profundidade, como em sementeira direta a profundidade de sementeira foi afetada pelo teor de humidade do solo, resistência do solo à profundidade e velocidade da operação de sementeira. Adicionalmente observaram-se condições heterogéneas de emergência e estabelecimento da cultura afetadas por condições físicas de compactação do solo. Comparando os diferentes sistemas de mobilização, obteve-se uma significativa redução de combustível para a técnica de sementeira direta, apesar de se terem observado diferenças estatísticas significativas considerando diferentes calibrações de profundidade de sementeira Do trabalho realizado nesta Tese ressalva-se a importância que as tecnologias de agricultura de precisão podem ter no acompanhamento e avaliação de culturas em sementeira direta, bem como a necessidade de melhores procedimentos no controlo de profundidade dos semeadores pelo respetivos operadores ou ao invés, a adoção de semeadores com mecanismos ativos de controlo de profundidade. ABSTRACT Among the various factors that contribute towards producing a successful maize crop, seeders vertical distribution evaluated through seed depth placement is a key determinant, especially under a no-tillage technique. At the same time in conservation agriculture systems due to the complexity of natural and agricultural ecosystems site specific management became an important approach to understand and manage the variability of soil properties and crop establishment, especially when using geo spatial information and affording readily technology Thus, the main objective of this Thesis was to evaluate the spatial variability of seed depth placement and crop establishment in maize crops under no-tillage conditions compared to different tillage systems, using conventional seed depth control no till seeders and precision farming technologies. Trials were carried out in the Mediterranean region of Alentejo, in private farms along the sowing operations season over the years 2010, 2011, 2012 and 2015 in 6 different experimental fields. Experimental work covered field tests with in loco soil and crop evaluations, fuel operation evaluations and aerial sensing. The results obtained indicate that not only tillage system affected seed depth placement but under no till conditions seed depth was affected by soil moisture content, soil resistance to penetration and seeders forward speed. In addition uneven crop seedling and establishment depended on seed depth placement and could be affected by physical problems of compaction layers. Significant reduction in fuel consumption was observed for no till operations although significant differences observed according to different setting calibrations of seed depth control. According to the results, precision agriculture is an important tool to evaluate crops under no till conditions and seed depth mechanisms should be more accurate by the operators or is determinant the adoption of new active depth control technology to improve seeders performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging of H217O has a number of important applications. Mapping the distribution of H217O produced by oxidative metabolism of 17O-enriched oxygen gas may lead to a new method of metabolic functional imaging; regional cerebral blood flow also can be measured by measuring the H217O distribution after the injection of 17O-enriched physiological saline solution. Previous studies have proposed a method for indirect detection of 17O. The method is based on the shortening of the proton T2 in H217O solutions, caused by the residual 17O-1H scalar coupling and transferred to the bulk water via fast chemical exchange. It has been shown that the proton T2 of H217O solutions can be restored to that of H216O by irradiating the resonance frequency of the 17O nucleus. The indirect 17O image thus is obtained by taking the difference between two T2-weighted spin-echo images: one acquired after irradiation of the 17O resonance and one acquired without irradiation. It also has been established that, at relatively low concentrations of H217O, the indirect method yields an image that quantitatively reflects the H217O distribution in the sample. The method is referred to as PRIMO (proton imaging of oxygen). In this work, we show in vivo proton images of the H217O distribution in a rat brain after an i.v. injection of H217O-enriched physiological saline solution. Implementing the indirect detection method in an echo-planar imaging sequence enabled obtaining H217O images with good spatial and temporal resolution of few seconds.