996 resultados para Microscopic simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue testing was conducted using a kind of triangular isostress specimen to obtain the short-fatigue-crack behaviour of a weld low-carbon steel. The experimental results show that short cracks continuously initiate at slip bands within ferrite grain domains and the crack number per unit area gradually increases with increasing number of fatigue cycles. The dispersed short cracks possess an orientation preference, which is associated with the crystalline orientation of the relevant slip system. Based on the observed collective characteristics, computer modelling was carried out to simulate the evolution process of initiation, propagation and coalescence of short cracks. The simulation provides progressive displays which imitate the appearance of experimental observations. The results of simulation indicate that the crack path possesses a stable value of fractal dimension whereas the critical value of percolation covers a wide datum band, suggesting that the collective evolution process of short cracks is sensitive to the pattern of crack site distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation model of floating half zone with non-uniform temperature distribution at the upper rod and uniform temperature distribution at lower rod was discussed by numerical investigation in a previous paper. In the present paper, the experimental investigation of the simulation model is given generally. The results of the present model show that the temperature profile is quite different and the critical applied temperature difference is lower than the one of usual model with same geometrical parameters in most cases. The features of critical Marangoni number depending on the liquid bridge volume are also different from the ones of usual model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared, The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions, Finally, a quantitative comparison between the global model and the fluid model is made to test their validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation model with adiabatic condition at the upper rod and constant temperature at the lower rod is studied numerically in this paper. The temperature distribution in a simulation model is closer to the one in the half part of a floating full zone in comparison with the one in a usual floating half zone model with constant temperature at both rods, because the temperature distribution of a floating full zone is symmetric for the middle plane in a microgravity environment. The results of the simulation model show that the temperature profiles and the how patterns are different from those of the usual floating half zone model. Another type of half zone model, with a special non-uniform temperature distribution at the upper rod and constant temperature at the lower rod, has been suggested by recent experiments. The temperature boundary condition of the upper rod has a maximum value in the center and a lower value near the free surface. This modified simulation model is also simulated numerically in the present paper. Copyright (C)1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The g-jitter effects on the thermocapillary convection in liquid bridge of floating half zone were studied by numerical simulation for unsteady and axi-symmetric model in the cylindrical coordinate system. The g-jitter field was given by a steady microgravity field in addition to an oscillatory low-gravity field, and the effects on the flow field, temperature distribution and free surface deformation were analyzed numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining grain boundary (GB) and its influence zone, a micromechanic model for polycrystal is established for considering the influence of GB. By using the crystal plasticity theory and the finite element method for finite deformation, numerical simulation is carried out by the model. Calculated results display the microscopic characteristic of deformation fields of grains and are in qualitative agreement with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a dislocation array emitted from a crack tip under mode II loading with asymmetric tilt grain boundaries (GBs) is analysed by the molecular dynamics method. The GBs can generally be described by planar and linear matching zones and unmatching zones. All GBs are observed to emit dislocations. The GBs migrated easily due to their planar and linear matching structure and asymmetrical type. The diffusion induced by stress concentration is found to promote the GB migration. The transmissions of dislocations are either along the matched plane or along another plane depending on tilt angle theta. Alternate processes of stress concentration and stress relaxation take place ahead of the pileup. The stress concentration can be released either by transmission of dislocations, by atom diffusion along GBs, or by migration of GBs by formation of twinning bands. The simulated results also unequivocally demonstrate two processes, i.e. asymmetrical GBs evolving into symmetrical ones and unmatching zones evolving into matching ones during the loading process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time averaged two-dimensional fluid model including an electromagnetic module with self-consistent power deposition was developed to simulate the transport of a low pressure radio frequency inductively coupled plasma source. Comparsions with experiment and previous simulation results show, that the fluid model is feasible in a certain range of gas pressure. In addition, the effects of gas pressure and power input have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down.