897 resultados para Microorganismos - Effect of antibiotics on


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ready to eat pasta meals are an important segment of convenience food, but these products are subjected to significant changes in physico-chemical properties during storage, which reduce their acceptability at the time of consumption. A deep understanding of the properties of the single phases, their dependence upon formulation, and the changes they undergo during storage is very important to intelligently intervene on products properties to improve their quality at the time of consumer’s consumption. This work has focused on the effect of formulation on physico-chemical properties of pasta and tomato sauce with a special focus on mechanical/rheological attributes and water status. Variable considered in pasta formulation were gluten, glycerol and moisture content and their effect was studied in both freshly cooked or shelf-stable cooked pasta. The effect of multiple hydrocolloids (at different levels) was considered in the case of tomato sauce. In the case of pasta, it was found that water content was indeed a very important variable in defying pasta mechanical properties and water status. Higher moisture contents in pasta resulted in softer samples and reduced the changes in physico-chemical parameters during storage. Glycerol was found to favor water uptake and to soften the pasta matrix, acting as plasticizer and increasing molecular mobility. The addition of gluten hardened pasta but did not affect the water status. The combination of higher amount of gluten (15%, g gluten / 100 g product) with higher moisture content (59-65%, g water / 100 g product) were found to minimize the physico-chemical changes occurring in RTE pasta meals during storage, improving quality at longer storage times. Hydrocolloids added into tomato sauce modulated its mechanical attributes and water status in very different manner, depending on hydrocolloid type and concentration. This may allow to produce tomato sauce for different applications and that are expected to have different performance if placed in contact with pasta in a RTE meal. Future work should include an investigation of how the interaction between the two phases (pasta and sauce) can be modulated and controlled by controlling the properties of the single phases with the goal of obtaining highly acceptable products also at longer storage times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To assess the effect of ageing on in vivo human ciliary muscle morphology and contractility during accommodation. Methods. Seventy-nine subjects, aged 19–70 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscle in the relaxed state, and at stimulus vergence levels of -4 and -8 D, using anterior segment optical coherence tomography (AS-OCT). Objective refractions and axial lengths were also recorded. Linear regression analysis was performed to determine the effect of age on nasal and temporal ciliary muscle morphologic characteristics. Results. Ciliary muscle anterior length decreased significantly with age both nasally (R = 0.461, P = 0.001) and temporally (R = 0.619, P < 0.001) in emmetropic eyes. In a subset of 37 participants, ciliary muscle maximum width increased significantly with age, by 2.8 µm/year nasally (R = 0.54, P < 0.001) and 3.0 µm/year temporally (R = 0.44, P = 0.007), while the distance from the inner apex of the ciliary muscle to the scleral spur decreased significantly with age on both the nasal and temporal aspects (R = 0.47; P = 0.004 and R = 0.43; P = 0.009, respectively). During accommodation, changes to ciliary muscle thickness and length remained constant throughout life. Conclusions. The human ciliary muscle undergoes age-dependent changes in morphology that suggest an antero-inwards displacement of muscle mass, particularly in emmetropic eyes. However, the morphologic changes observed appear not to affect the ability of the muscle to contract during accommodation, even in established presbyopes, thus supporting a lenticular model of presbyopia development.