860 resultados para Microfluidic Devices
Resumo:
The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
As mobile devices become increasingly diverse and continue to shrink in size and weight, their portability is enhanced but, unfortunately, their usability tends to suffer. Ultimately, the usability of mobile technologies determines their future success in terms of end-user acceptance and, thereafter, adoption and social impact. Widespread acceptance will not, however, be achieved if users’ interaction with mobile technology amounts to a negative experience. Mobile user interfaces need to be designed to meet the functional and sensory needs of users. Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use focuses on human-computer interaction related to the innovation and research in the design, evaluation, and use of innovative handheld, mobile, and wearable technologies in order to broaden the overall body of knowledge regarding such issues. It aims to provide an international forum for researchers, educators, and practitioners to advance knowledge and practice in all facets of design and evaluation of human interaction with mobile technologies.
Resumo:
The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.
Resumo:
The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.