950 resultados para Metabolism regulation
Resumo:
Short-term overfeeding with carbohydrate induced a marked stimulation of energy expenditure, amounting to 33 per cent of the excess energy intake on the 7th day of overfeeding. This value is larger than that previously reported in man. Stimulation of lipogenesis and increased activity of the sympathetic nervous system seem to be the two major mechanisms which account for the stimulation of energy expenditure during carbohydrate overfeeding.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a high-affinity ligand for both PPARalpha and PPARgamma. Using GW2331 as a radioligand in competition binding assays, we show that certain mono- and polyunsaturated fatty acids bind directly to PPARalpha and PPARgamma at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-Delta12,14-prostaglandin J2 can function as subtype-selective ligands for PPARalpha and PPARgamma, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.
Resumo:
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Resumo:
In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.
Resumo:
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.
Resumo:
Comment on: Jacovetti C, et al. J Clin Invest 2012; 122:3541-51.
Resumo:
The interest in reactive electrophile species (RES) stems largely from the fact that they can have powerful biological activities. RES stimulate the expression of cell survival genes as well many other genes commonly upregulated in environmental stress and pathogenesis. RES levels must be carefully controlled in healthy cells but their formation and destruction during stress is of great interest. Unlike many 'classical' signals and hormones, RES can potentially affect gene expression at all levels by chemically reacting with nucleic acids, proteins and small molecules as well as by indirectly lowering pools of cellular reductants. Recent works involving genetic approaches have begun to provide compelling evidence that, although excess RES production can lead to cell damage, lower levels of RES may modulate the expression of cell survival genes and may actually contribute to survival during severe stress.
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
Abstract : The term "muscle disuse" is often used to refer collectively to reductions in neuromuscular activity as observed with sedentary lifestyles, reduced weight bearing, cancer, chronic obstructive pulmonary disease, chronic heart failure, spinal cord injury, sarcopenia or exposure to microgravity (spaceflight). Muscle disuse atrophy, caused by accelerated proteolysis, is predominantly due to the activation of the ATP-dependent ubiquitin (Ub) proteasome pathway. The current advances in understanding the molecular factors contributing to the Ub-dependent proteolysis process have been made mostly in rodent models of human disease and denervation with few investigations performed directly in humans. Recently, in mice, the genes Atrogin-1 and MuRF1 have been designated as primary candidates in the control of muscle atrophy. Additionally, the decreased activity of the Akt/GSK-3ß and Akt/mTOR pathways has been associated with a reduction in protein synthesis and contributing to skeletal muscle atrophy. Therefore, it is now commonly accepted that skeletal muscle atrophy is the result of a decreased protein synthesis concomitant with an increase in protein degradation (Glass 2003). Atrogin-1 and MuRF1 are genes expressed exclusively in muscle. In mice, their expression has been shown to be directly correlated with the severity of atrophy. KO-mice experiments showed a major protection against atrophy when either of these genes were deleted. Skeletal muscle hypertrophy is an important function in normal postnatal development and in the adaptive response to exercise. It has been shown, in vitro, that the activation of phosphatidylinositol 3-kinase (PI-3K), by insulin growth factor 1 (IGF-1), stimulates myotubes hypertrophy by activating the downstream pathways, Akt/GSK-3ß and Akt/mTOR. It has also been demonstrated in mice, in vivo, that activation of these signalling pathways causes muscle hypertrophy. Moreover, the latter were recently proposed to also reduce muscle atrophy by inhibiting the FKHR mediated transcription of several muscle atrophy genes; Atrogin-1 and MuRF1. Therefore, these targets present new avenues for developing further the understanding of the molecular mechanisms involved in both skeletal muscle atrophy and hypertrophy. The present study proposed to investigate the regulation of the Akt/GSK-3ß and Akt/mTOR signalling pathways, as well as the expression levels of the "atrogenes", Atrogin-1 and MuRF1, in four human models of skeletal muscle atrophy. In the first study, we measured the regulation of the Akt signalling pathway after 8 weeks of both hypertrophy stimulating resistance training and atrophy stimulation de-training. As expected following resistance training, muscle hypertrophy and an increase in the phosphorylation status of the different members of the Akt pathway was observed. This was paralleled by a concomitant decrease in FOXO1 nuclear protein content. Surprisingly, exercise training also induced an increase in the, expression of the atrophy genes and proteins involved in the ATP-dependant ubiquitin-proteasome system. On the opposite, following the de-training period a muscle atrophy, relative to the post-training muscle size, was measured. At the same time, the phosphorylation levels of Akt and GSK-3ß were reduced while the amount of FOXO1 in the nucleus increased. After the atrophy phase, there was also a reduction in Atrogin-1 and MuRF1 contents. In this study, we demonstrate for the first time in healthy human skeletal muscle, that the regulation of Akt and its downstream targets GSK-3ß, mTOR and FOXO1 are associated with both thé skeletal muscle hypertrophy and atrophy processes. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of both upper and lower motor neurons, which leads to severe muscle weakness and atrophy. All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls. ALS patients displayed an increase in Atrogin-1 mRNA and protein content which was associated with a decrease in Akt activity. However there was no difference in the mRNA and phospho-protein content of FOXO1, FOXO3a, p70S6K and GSK-3ß. The transcriptional regulation of human Atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via an other signalling pathway. Chronic complete spinal cord injury (SCI) is associated with severe muscle atrophy which is linked to co-morbidity factors such as diabetes, obesity, lipid disorders and cardiovascular diseases. Molecular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood. The aim of the present study was to determine if there was an increase in catabolic signalling targets such as Atrogin-1, MuRF1, FOXO and myostatin, and decreases in anabolic signalling targets such as IGF, Akt, GSK-3ß, mTOR, 4E-BP1 and p-70S6K in chronic complete SCI patients. All measurements were performed in biopsies taken from 8 complete chronic SCI patients and 7 age matched healthy controls. In SCI patients when compared with controls, there was a significant reduction in mRNA levels of Atrogin1, MuRF1 and Myostatin. Protein levels for Atrogin-1, FOX01 and FOX03a were also reduced. IGF-1 and both phosphorylated GSK-3ß and 4E-BP1 were decreased; the latter two in an Akt and mTOR independent manner, respectively. Reductions in Atrogin-1, MuRF1, FOXO and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signalling proteins regulating anabolism such as IGF, GSK3ß and 4E-BP1 would reduce the ability to increase protein synthesis rates in this chronic state of muscle wasting. The molecular mechanisms controlling age-related skeletal muscle loss in humans are poorly understood. The present study aimed to investigate the regulation of several genes and proteins involved in the activation of key signalling pathways promoting muscle hypertrophy such as GH/STAT5/IGF, IGF/Akt/GSK-3ß/4E-BP1 and muscle atrophy such as TNFα/SOCS3 and Akt/FOXO/Atrogin-1 or MuRF1 in muscle biopsies from 13 young and 16 elderly men. In the older, as compared with the young subjects, TNFα and SOCS-3 were increased while growth hormone receptor protein (GHR) and IGF-1 mRNA were both decreased. Akt protein levels were increased however no change in phosphorylated Akt content was observed. GSK-3ß phosphorylation levels were increased while 4E-BP1 was not changed. Nuclear FKHR and FKHRL1 protein levels were decreased, with no changes in their atrophy target genes, Atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signalling proteins such as GHR, IGF and Akt. TNFα, SOCS-3 and myostatin are potential candidates influencing this anabolic perturbation. In conclusion our results support those obtained in rodent or ín vitro models, and demonstrate Akt plays a pivotal role in the control of muscle mass in humans. However, the Akt phosphorylation status was dependant upon the model of muscle atrophy as Akt phosphorylation was reduced in all atrophy models except for SCI. Additionally, the activity pattern of the downstream targets of Akt appears to be different upon the various human models. It seems that under particular conditions such as spinal cord injury or sarcopenia, .the regulation of GSK-3ß, 4eBP1 and p70S6K might be independent of Akt suggesting alternative signalling pathways in the control of these the anabolic response in human skeletal muscle. The regulation of Atrogin-1 and MuRF1 in some of our studies has been shown to be also independent of the well-described Akt/FOXO signalling pathway suggesting that other transcription factors may regulate human Atrogin-1 and MuRF1. These four different models of skeletal muscle atrophy and hypertrophy have brought a better understanding concerning the molecular mechanisms controlling skeletal muscle mass in humans.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We show here that the alpha, beta, and gamma isotypes of peroxisome proliferator-activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARalpha and beta expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARalpha, beta, and gamma mutant mice, we demonstrate that PPARalpha and beta are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARalpha is mainly involved in the early inflammation phase of the healing, whereas PPARbeta is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARbeta mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARalpha and beta in adult mouse epidermal repair.
Resumo:
Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1β and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1β, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3(-/-) mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1β and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.