933 resultados para Members of the household of the insured
Resumo:
Aquatic macro-invertebrates encompass all those organisms that be seen with unaided eyes. Most macro-invertebrates are categorised as semi-aquatic in that they are aquatic in early stages, but live as terrestrial organisms as adults, while others like gastropods, bivalves, Oligochaetae, Hirudinae and ostracods are exclusively aquatic. Some of them such as mayflies lay eggs in water and subsequent stages also live in water until adulthood when they emerge to live a terrestrial life. In others, eggs are laid near the water, while some like members of Tendipedidae (midges) lay their eggs on the leaves of aquatic macrophytes and after hatching their larvae creep into water
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
The yrast sequence of the neutron-rich dysprosium isotope Dy168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se82 beam and an Er170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the γ rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground-state rotational band of Dy168 have been confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+→2+ transition in Dy170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed. © 2010 The American Physical Society.
Resumo:
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichotvensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages. (c) 2008 Published by Elsevier Inc.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.
Resumo:
This paper describes the high-frequency echolocation signals from free-ranging Yangtze finless porpoise in the Tian-e-zhou Baiji National Natural Reserve in Hubei Province, China. Signal analysis showed that the Yangtze finless porpoise clicks are typical high-frequency narrow-band (relative width of the frequency spectrum Q=6.6 &PLUSMN; 1.56, N=548) ultrasonic pulses. The peak frequencies of the typical clicks range from 87 to 145 kHz with an average of 125 &PLUSMN; 6.92 kHz. The durations range from 30 to 122 μ s with an average of 68 &PLUSMN; 14.12 μ s. The characteristics of the signals are similar to those of other members of the Phocoenidae as well as the distantly related delphinids, Cephalorhynchus spp. Comparison of these signals to those of the baiji (Lipotes vexillifer), who occupies habitat similar to that of the Yangtze finless porpoise, showed that the peak frequencies of clicks produced by the Yangtze finless porpoise are remarkably higher than those produced by the baiji. Difference in peak frequency between the two species is probably linked to the different size of prefer-red prey fish. Clear double-pulse and multi-pulse reverberation structures of clicks are noticed, and there is no indication of any low-frequency (< 70 kHz) components during the recording period. © 2005 Acoustical Society of America.
Resumo:
Thirteen species of Limnodriloidinae (Tubificidae) are recorded from marine and brackish-water habitats of Hainan Island, southern China, including 11 species of Doliodrilus and two species belonging to Limnodriloides . Eight species are new to science: D. bisaccus sp. n. (types from Japan), D. longidentatus sp. n. (types from Hong Kong), D. ciliatus sp. n., D. adiacens sp. n., D. fibrisaccus sp. n. (also from Fiji), D. brachyductus sp. n., D. bidolium sp. n. and D. chinensis sp. n. In addition, material of D. puertoricensis Erseus and Milligan, 1988, from New Caledonia, is briefly described. This study shows that Doliodrilus is unexpectedly species-rich in Asian seas, in particular, around Hainan. Including an unnamed species from this island, the known members of this genus increase from three to 12.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
Resumo:
In this paper we present a methodology and its implementation for the design and verification of programming circuit used in a family of application-specific FPGAs that share a common architecture. Each member of the family is different either in the types of functional blocks contained or in the number of blocks of each type. The parametrized design methodology is presented here to achieve this goal. Even though our focus is on the programming circuitry that provides the interface between the FPGA core circuit and the external programming hardware, the parametrized design method can be generalized to the design of entire chip for all members in the FPGA family. The method presented here covers the generation of the design RTL files and the support files for synthesis, place-and-route layout and simulations. The proposed method is proven to work smoothly within the complete chip design methodology. We will describe the implementation of this method to the design of the programming circuit in details including the design flow from the behavioral-level design to the final layout as well as the verification. Different package options and different programming modes are included in the description of the design. The circuit design implementation is based on SMIC 0.13-micron CMOS technology.
Resumo:
All the members of the solid solution of YSr2-xCaxV3O9-y have the orthorhombic symmetry. Their electrical and magnetic properties have been studied. The magnetic susceptibility and electrical resistivity increase gradually with x. The system shows paramagnetic behavior both at 300 K and at 77 K. It is shown that a change of valence state of vanadium obviously affects the electrical and magnetic properties of the solid solution.
Resumo:
Barcodes based on mitochondrial cytochrome oxidase (mtDNA CO1) sequences are being used for broad taxonomic groups of animals with demonstrated success in species identification and cryptic species discovery, but it has become clear that complementation by a nuclear marker system is necessary, in particular for the barcoding of plants. Here, we propose the nuclear internal transcribed spacer (ITS) as a potentially usable and complementary marker for species identification of red macroalgae, as well as present a primary workflow for species barcoding. Data show that for most red macroalgal genera (except members of the family Delesseriaceae), the size of ITS region ranges from 600 to 1200 bp, and contains enough variation to generate unique identifiers at either the species or genus levels. Consistent with previous studies, we found that the ITS sequence can resolve closely related species with the same fidelity as mtDNA CO1. Significantly, we confirmed that length polymorphism in the ITS region (including 5.8S rRNA gene) can be utilized as a character to discriminate red macroalgal species. As a complementary marker, the verifiable nuclear ITS region can speed routine identification and the detection of species, advance ecological and taxonomic inquiry, and permit rapid and accurate analysis of red macroalgae.
Resumo:
Penaeidins, members of a new family of antimicrobial peptides constitutively produced and stored in the haemocytes of penaeid shrimp, display antimicrobial activity against bacteria, and fungi. Here, a DNA sequence encoding the mature Ch-penaeidin peptide was cloned into the pPIC9K vector and transformed into Pichia pastoris. The transformed cells were screened for multi-copy plasmids using increasing concentrations of G418. Positive colonies carrying chromosomal integrations of the Chp gene were identified by phenotype and PCR. When transformed cells were induced with methanol, SDS-PAGE and Western blotting revealed the production of a similar to6100 Da recombinant CHP (rCHP) expression product. Large scale expression revealed that rCHP was produced at 108 mg/L under optimal conditions in the highest Chp-producing P. pastoris clone. The antimicrobial activities of rCHP were studied by liquid phase analysis, which revealed that rCHP exhibited activities against some Gram-negative and Gram-positive bacteria, but had a relatively low activity against some fungi. Purification of rCHP by cation exchange chromatography and subsequent automated amino acid sequencing revealed the presence of four additional amino acids (YVEF) at the N-terminus that belonged to the cleaved fusion signal peptide; these residues may account for the observed decrease in antifungal activity. Together, these observations indicate that rCHP is an effective antimicrobial peptide that can be successfully produced at high levels in the yeast, and therefore may be a potential antimicrobial candidate for practical use. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Complete mitochondrial genomes have proven extremely valuable in helping to understand the evolutionary relationships among metazoans. However, uneven taxon sampling may lead to unclear or even erroneous phylogenetic topologies. The decapod crustaceans are relatively well-sampled, but sampling is still uneven within this group. We have sequenced the mitochondrial genomes of two shrimps Litopenaeus vannamei and Fenneropenaeus chinensis. As seen in other metazoans, the genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and an AT-rich non-coding region. The gene arrangements are consistent with the pancrustacean ground pattern. Both the pattern of gene rearrangements and phylogenomic analyses using concatenated nucleic acid and amino acid sequences of the 13 mitochondrial protein-coding genes strengthened the support that Caridea and Palinura are primitive members of Pleocyemata. These sequences, in combination with two previously published penaeid mitochondrial genomes, suggest that genera within the family Penaeidae have the following relationship: (((Penaeits + Fenneropenaett.) + Litopeiiaelts) + Marsupenaeus). The analyses of nucleic acid and amino acid sequences of the mitochondrial genomes also strongly support the monophyly of Penaeidae, Brachyura and Pleocyemata. In addition, the analyses of the average Ka/Ks in the 13 mitochondrial protein-coding genes of penaeid shrimps indicated a strong purifying selection within this group.
Resumo:
Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies.