921 resultados para Medical applications
Resumo:
This paper presents an overview of the strengths and limitations of existing and emerging geophysical tools for landform studies. The objectives are to discuss recent technical developments and to provide a review of relevant recent literature, with a focus on propagating field methods with terrestrial applications. For various methods in this category, including ground-penetrating radar (GPR), electrical resistivity (ER), seismics, and electromagnetic (EM) induction, the technical backgrounds are introduced, followed by section on novel developments relevant to landform characterization. For several decades, GPR has been popular for characterization of the shallow subsurface and in particular sedimentary systems. Novel developments in GPR include the use of multi-offset systems to improve signal-to-noise ratios and data collection efficiency, amongst others, and the increased use of 3D data. Multi-electrode ER systems have become popular in recent years as they allow for relatively fast and detailed mapping. Novel developments include time-lapse monitoring of dynamic processes as well as the use of capacitively-coupled systems for fast, non-invasive surveys. EM induction methods are especially popular for fast mapping of spatial variation, but can also be used to obtain information on the vertical variation in subsurface electrical conductivity. In recent years several examples of the use of plane wave EM for characterization of landforms have been published. Seismic methods for landform characterization include seismic reflection and refraction techniques and the use of surface waves. A recent development is the use of passive sensing approaches. The use of multiple geophysical methods, which can benefit from the sensitivity to different subsurface parameters, is becoming more common. Strategies for coupled and joint inversion of complementary datasets will, once more widely available, benefit the geophysical study of landforms.Three cases studies are presented on the use of electrical and GPR methods for characterization of landforms in the range of meters to 100. s of meters in dimension. In a study of polygonal patterned ground in the Saginaw Lowlands, Michigan, USA, electrical resistivity tomography was used to characterize differences in subsurface texture and water content associated with polygon-swale topography. Also, a sand-filled thermokarst feature was identified using electrical resistivity data. The second example is on the use of constant spread traversing (CST) for characterization of large-scale glaciotectonic deformation in the Ludington Ridge, Michigan. Multiple CST surveys parallel to an ~. 60. m high cliff, where broad (~. 100. m) synclines and narrow clay-rich anticlines are visible, illustrated that at least one of the narrow structures extended inland. A third case study discusses internal structures of an eolian dune on a coastal spit in New Zealand. Both 35 and 200. MHz GPR data, which clearly identified a paleosol and internal sedimentary structures of the dune, were used to improve understanding of the development of the dune, which may shed light on paleo-wind directions.
Resumo:
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants
Resumo:
- Gender dysphoria is a condition in which a child's subjectively felt identity and gender are not congruent with her or his biological sex. Because of this, the child suffers clinically significant distress or impairment in social functioning. - The Family Court of Australia has recently received an increasing number of applications seeking authorisation for the provision of hormones to treat gender dysphoria in children. - Some medical procedures and interventions performed on children are of such a grave nature that court authorisation must be obtained to render them lawful. These procedures are referred to as special medical procedures. - Hormonal therapy for the treatment of gender dysphoria in children is provided in two stages occurring years apart. Until recently, both stages of treatment were regarded by courts as special medical treatments, meaning court authorisation had to be provided for both stages. - In a significant recent development, courts have drawn a distinction between the two stages of treatment, permitting parents to consent to the first stage. In addition, it has been held that a child who is determined by a court to be Gillick competent can consent to stage 2 treatment. - The new legal developments concerning treatment for gender dysphoria are of ethical, clinical and practical importance to children and their families, and to medical practitioners treating children with gender dysphoria. Medical practitioners should benefit from an understanding of the recent developments in legal principles. This will ensure that they have up-to-date information about the circumstances under which treatment may be conducted with parental consent, and those in which they must seek court authorisation.
Resumo:
Plasmid DMA offers the promise of a new generation of pharmaceuticals that will address the often overlooked issue of vaccine production by offering a simple and reproducible method for producing a vaccine. Through reverse engineering, production could be reduced from up to 9 months to as little as 1 month. Simplified development and faster turn-around times means that DMA offers a solution to the vaccine crisis and will help to contain future viral outbreaks by enabling the production of a vaccine against new viral strains in the shortest possible time. Work currently being completed in the area of plasmid DMA production, purification and encapsulation will be presented.
Resumo:
Objectives Medical and dental students experience poor psychological well-being relative to their peers. This study aimed to assess the psychological well-being among medical and dental students in Saudi Arabia, identify the high-risk groups and assess the association between the psychological well-being and the academic performance. Methods In this cross-sectional study, 422 preclinical medical and dental students at Umm Al-Qura University, Saudi Arabia, were recruited to assess their depression, anxiety, stress, self-efficacy and satisfaction with life levels using 21-items Depression Anxiety Stress Scale (DASS-21), General Self-Efficacy (GSE) scale and Satisfaction With Life Scale (SWLS). Students’ academic weighted grades were obtained later. Descriptive statistics and univariate general linear model were used to analyse data. Results High levels of depression (69.9%), anxiety (66.4%) and stress (70.9%) were indicated, whereas self-efficacy (mean = 27.22, sd = 4.85) and life satisfaction (mean = 23.60, sd = 6.37) were within the normal range. Female medical students had higher psychological distress in contrast to dental students. In general, third-year students were more depressed and stressed in comparison with second-year students, except for stress among dental students. Moreover, all females had higher self-efficacy than males. Life satisfaction was higher within the second-year and high family income students. Depression was the only psychological variable correlated with the academic performance. Conclusion High levels of psychological distress were found. Female medical students had higher psychological distress than males, whereas male dental students had higher distress than female. Medical students at third year were more depressed and stressed. Dental students were more depressed in the third year, but more stressed in the second year. Attention should be directed towards reducing the alarming levels of depression, anxiety and stress among medical and dental students.
Resumo:
Researchers spend an average of 38 working days preparing an NHMRC Project Grant proposal, but with success rates of just 15% then over 500 years of researcher went into failed applications in 2014. This time would likely have been better spent on actual research. Many applications are non-competitive and could possibly be culled early, saving time for both researchers and funding agencies. Our analysis of the major health and medical scheme in Australia estimated that 61% of applications were never likely to be funded...
Resumo:
Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500~800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh.g-1) and rate capability. Even at a current density of 1 A.g-1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh.g-1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications.
Resumo:
The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.
Resumo:
Achieving high efficiency with improved power transfer range and misalignment tolerance is the major design challenge in realizing Wireless Power Transfer (WPT) systems for industrial applications. Resonant coils must be carefully designed to achieve highest possible system performance by fully utilizing the available space. High quality factor and enhanced electromagnetic coupling are key indices which determine the system performance. In this paper, design parameter extraction and quality factor optimization of multi layered helical coils are presented using finite element analysis (FEA) simulations. In addition, a novel Toroidal Shaped Spiral (TSS) coil is proposed to increase power transfer range and misalignment tolerance. The proposed shapes and recommendations can be used to design high efficiency WPT resonator in a limited space.
Resumo:
A switching control strategy is proposed for single inductor current-fed push-pull converter with a secondary side active voltage doubler rectifier or a voltage rectifier used in photovoltaic (PV) grid interfacing. The proposed switching control strategy helps to turn-on and turn-off the primary side power switches with zero-voltage and zero-current switching. The operation of the push-pull converter is analyzed for two modes of operation. The feasibility of the proposed switching control strategy is validated using simulation and experimental results.
Resumo:
An increasing amount of people seek health advice on the web using search engines; this poses challenging problems for current search technologies. In this paper we report an initial study of the effectiveness of current search engines in retrieving relevant information for diagnostic medical circumlocutory queries, i.e., queries that are issued by people seeking information about their health condition using a description of the symptoms they observes (e.g. hives all over body) rather than the medical term (e.g. urticaria). This type of queries frequently happens when people are unfamiliar with a domain or language and they are common among health information seekers attempting to self-diagnose or self-treat themselves. Our analysis reveals that current search engines are not equipped to effectively satisfy such information needs; this can have potential harmful outcomes on people’s health. Our results advocate for more research in developing information retrieval methods to support such complex information needs.