960 resultados para Measurement-While-Drilling
Resumo:
We demonstrate a technique for precisely measuring hyperfine intervals in alkali atoms. The atoms form a three-level system in the presence of a strong control laser and a weak probe laser. The dressed states created by the control laser show significant linewidth reduction. We have developed a technique for Doppler-free spectroscopy that enables the separation between the dressed states to be measured with high accuracy even in room temperature atoms. The states go through an avoided crossing as the detuning of the control laser is changed from positive to negative. By studying the separation as a function of detuning, the center of the level-crossing diagram is determined with high precision, which yields the hyperfine interval. Using room temperature Rb vapor, we obtain a precision of 44 kHz. This is a significant improvement over the current precision of similar to1 MHz.
Direct measurement of phase of foreward-scattered light using polarization heterodyne interferometer
Resumo:
We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.
Resumo:
We have investigated the local electronic properties and the spatially resolved magnetoresistance of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature Scanning Tunneling Microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on quartz substrates were prepared using chemical solution deposition (CSD) process. The CSD grown films were imaged by both STM and atomic force microscopy (AFM). Due to the presence of a large number of grain boundaries (GB's), these films show low field magnetoresistance (LFMR) which increases at lower temperatures. The measurement of spatially resolved electronic properties reveal the extent of variation of the density of states (DOS) at and close to the Fermi level (EF) across the grain boundaries and its role in the electrical resistance of the GB. Measurement of the local conductance maps (LCMAP) as a function of magnetic field as well as temperature reveals that the LFMR occurs at the GB. While it was known that LFMR in CMR films originates from the GB, this is the first investigation that maps the local electronic properties at a GB in a magnetic field and traces the origin of LFMR at the GB.
Resumo:
BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.
Resumo:
Two backward-facing models with step heights of 2 and 3 mm are used to measure the convective surface heat transfer rates by using platinum thin-film gauges, deposited on Macor inserts. Heat transfer rates have been theoretically calculated along the flat plate portion of a model using the Eckert reference temperature method. The experimentally determined surface heat transfer rate distributions are compared with theoretical and numerical estimations. Experimental heat flux distribution over a flat plate model showed good agreement with the reference temperature method at stagnation enthalpy range of 0.8-2 MJ/kg. Theoretical analysis has been used for downstream of a backward-facing step using Gai's nondimensional analysis. It has been found from the present study that approximately 10 and 8 step heights are required for the flow to reattach for 2 and 3 mm step height backward-facing step models, respectively, at a nominal Mach number of 7.6.
Resumo:
As with 1,2-diphenylethane (dpe), X-ray crystallographic methods measure the central bond in meso-3,4-diphenylhexane-2,5-done (dphd) as significantly shorter than normal for an sp(3)-sp(3) bond. The same methods measure the benzylic (ethane C-Ph) bonds in dphd as unusually long for sp(3)-sp(2) liaisons. Torsional motions of the phenyl rings about the C-Ph bonds have been proposed as the artifacts behind the result of a 'short' central bond in dpe. While a similar explanation can, presumably, hold for the even 'shorter' central bond in dphd, it cannot account for the 'long' C-Ph bonds. The phenyl groups, departing much from regular hexagonal shape, adopt highly skewed conformations with respect to the plane constituted by the four central atoms. It is thought that-the thermal motions of the phenyl rings, conditioned by the potential wells in which they are ensconced in the unit cell, are largely libratory around their normal axes. In what appears to be a straightforward explanation under the 'rigid-body' concept, it appears that these libratory motions of the phenyl rings, that account, at the same time, for the 'short' central bond, are the artifacts behind the 'long' measurement of the C-Ph bonds. These motions could be superimposed on torsional motions analogous to those proposed in the case of dpe. An inspection of the ORTEP diagram from the 298 K data on dphd clearly suggests these possibilities. Supportive evidence for these qualitative explanations from an analysis of the differences between the mean square displacements of C(1) and C(7)/C(1a) and C(7a) based on the 'rigid-body model' is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Resistance temperature detectors (RTDs) are being widely used to detect low temperature, while thermocouples (TCs) are being used to detect high temperature. The materials suitable for RTDs are platinum, germanium, carbon, carbon-glass, cernox, etc. Here, we have reported the possible application of another form of carbon i.e. carbon nanotubes in low temperature thermometry. It has been shown the resistance R and the sensitivity of carbon nanotube bundles can be tuned and made suitable for ultralow temperature detection. We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K to felicitate the possible application of bundles in low temperature RTDs. ©2008 American Institute of Physics
Resumo:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering. One very common application is for measuring the motion of an optical mouse.
Resumo:
In this paper, the development of a novel multipoint pressure sensor system suitable for the measurement of human foot pressure distribution has been presented. It essentially consists of a matrix of cantilever sensing elements supported by beams. Foil type strain gauges have been employed for the conversion of foot pressure in to proportional electrical response. Information on the signal conditioning circuitry used is given. Also, the results obtained on the performance of the system are included.