973 resultados para Material Testing
Resumo:
Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.
Resumo:
Creep behavior of [±45°]s composite material is characterized by using uniaxial creep and recovery tests. The well-known Schapery nonlinear viscoelastic consti tutive relation was modified to make it suitable for characterizing the creep behavior of this material. Then, using this modified Schapery constitutive equation, by which the vis coplastic and creep damage can be taken into consideration, the creep behavior of [±45°]. glass fiber reinforced epoxy laminate was studied. The constitutive parameters of the material were determined experimentally, and the procedure and method of determination of the material parameters are proved to be valid.
Resumo:
Dilatational plastic equations, which can include the effects of ductile damage, are derived based on the equivalency in expressions for dissipated plastic work. Void damage developed internally at the large-strain stage is represented by an effective continuum being strain-softened and plastically dilated. Accumulation of this local damage leads to progressive failure in materials. With regard to this microstructural background, the constitutive parameters included for characterizing material behaviour have the sense of internal variables. They are not able to be determined explicitly by macroscopic testing but rather through computer simulation of experimental curves and data. Application of this constitutive model to mode-I cracking examples demonstrates that a huge strain concentration accompanied by a substantial drop of stress does occur near the crack tip. Eventually, crack propagation is simulated by using finite elements in computations. Two numerical examples show good accordance with experimental data. The whole procedure of study serves as a justification of the constitutive formulation proposed in the text.
Resumo:
A study has been made of the microstructure of the thermally assisted band in a low carbon ferrite-pearlite steel, resulting from high speed torsional testing with an average strain rate of about 1500 s−1. Metallographic examination showed that there are several fine shear bands distributed over a deformed region (the gauge length of the specimen). The width of these bands is estimated to be of the order of magnitude of 50 μm, and the spacing between them is roughly about 100 μm. Detailed scanning electron microscopy studies indicate that damage of the microstructure within the band is very apparent, as evidenced by microcrack initiation and coalescence along the shear deformation band. However, there is no evidence that the material in the band had become microcrystalline or non-crystalline.
Resumo:
The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.
Resumo:
Torna pública a abertura de inscrição para concurso público destinado ao preenchimento de cargos de Técnico em Material e Patrimônio, do Grupo-Atividades de Apoio Legislativo da Câmara dos Deputados.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
Furthermore, the compressed flow driven by the piston is discussed. The consistent solution of gasdynamical equations including solar gravity is obtained for the unsteady and two-dimensional configuration, which is applied to the region between the piston and shock wave. This solution may satisfy the jump conditions of shock wave, which separates the region of compressed flow and quiet corona.
Resumo:
Published also as: Documento de Trabajo Banco de España 0504/2005.