1000 resultados para Marijuana Regulation
Resumo:
In the present study a detailed investigation on the alterations of dopamine and its receptors in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycaemic rats were carried out. Glutamate receptor, NMDARI gene expression in the hypoglycaemic and hyperglycaemic brain was also studied. EEG recording in hypoglycaemic and hyperglycaemic will be carried out to measure brain activity. in vitro studies on glucose uptake and insulin secretion, with and without specific antagonists were carried out to confirm the specific receptor subtypes - DA D1, DA D2 and NMDA involved in the functional regulation during hyperglycaemic and hypoglycaemic brain damage. The molecular studies on the brain damage through dopaminergic and glutamergic receptors will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycaemia and hyperglycaemia. This has importance in the management of diabetes and antidiabetic treatment for better intellectual functioning of the individual.
Resumo:
In the present work, the role of oxygen, epinephrine and glucose supplementation in regulating neurotransmitter contents, adrenergic and glutamate receptor binding parameters in the cerebral cortex of experimental groups of neonatal rats were investigated. The study of neurotransmitters and their receptors in the cerebral cortex and the EEG pattern in the brain regions of neonatal rats were taken as index for brain damage due to hypoxia, oxygen and epinephrine. Real-Time PCR work was done to confirm the binding parameters. Second messenger, cyclic Adenosine Monophosphate (cAMP) was assayed to find the functional correlation of the receptors. Behavioural studies were carried out to confirm the biochemical and molecular studies. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The addictive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures from the molecular study brought to practice will lead to maintain healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.
Resumo:
Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Resumo:
The present study deals with the Cholinergic Receptor subtypes functional regulation in spinal cord injured monoplegic rats: Effect of 5-HT GABA and bone marrow cells.Spinal cord injury causes permanent and irrevocable motor deficits and neurodegeneration. Disruption of the spinal cord leads to diminished transmission of descending control from the brain to motor neurons and ascending sensory information. Behavioural studies showed deficits in motor control and coordination in SCI rats. Cholinergic system plays an important role in SCI, the evaluation of which provides valuable insight on the underlying mechanisms of motor deficit that occur during SCI. The cholinergic transmission was studied by assessing the muscarinic and nicotinic receptors; cholinergic enzymes- ChAT and AChE; second messenger enzyme PLC; transcription factor CREB and second messengers - IP3, cAMP and cGMP. We observed a decrease in the cholinergic transmission in the brain and spinal cord of SCI rats. The disrupted cholinergic system is the indicative of motor deficit and neuronal degeneration in the spinal cord and brain regions. SCI mediated oxidative stress and apoptosis leads to neuronal degeneration in SCI rats. The decreased expression of anti oxidant enzymes – SOD, GPx and neuronal cell survival factors - BDNF, GDNF, IGF-1, Akt and cyclin D2 along with increased expression of apoptotic factors – Bax, caspase-8, TNFa and NF-kB augmented the neuronal degeneration in SCI condition. BMC administration in combination with 5-HT and GABA in SCI rats showed a reversal in the impaired cholinergic neurotransmission and reduced the oxidative stress and apoptosis. It also enhanced the expression of cell survival factors in the spinal cord region. In SCI rats treated with 5-HT and GABA, the transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the spinal cord. Neurotrophic factors and anti-apoptotic elements in SCI rats treated with 5-HT and GABA along with BMC rendered neuroprotective effects accompanied by improvement in behavioural deficits. This resulted in a significant reversal of altered cholinergic neurotransmission in SCI. The restorative and neuro protective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of SCI.
Resumo:
Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.
Resumo:
Alpha glucan phosphorylase plays a very significant role in glycolysis. The inhibition and activation of this enzyme have significant effect on the rate of glycolysis. The rate of glycolysis is also determined by the interconversion between the active 3 and inactive Q forms of phosphorylase by two specific enzymes called phosphorylase phosphatase and phosphorylase kinase. The allosteric properties and interconversion mechanism reported for well—studied animal muscle phosphorylases do not fall under a general pattern. Studies using purified phosphorylase from marine sources are scanty. Detailed studies using specialised tissues from more marine animals are necessary to find the factors that control the properties and activities of the enzyme. This thesis is an attempt in this direction. The thesis deals with a detailed study of the control of the phosphorylase by both allosterism and interconversion between the g and b forms from four different aquatic animals of different habitat. Phosphorylase frm the four different animal muscles were purified either partially or completely and the kinetic and control properties were studied.
Resumo:
The present study was designed to investigate the protective effect of curcumin and vitamin D3 in the functional regulation of glutamatergic NMDA and AMPA receptors in streptozotocin (STZ) induced diabetic rats. Alterations in glutamatergic neurotransmission in the brain were evaluated by analyzing the glutamate content, glutamate receptors - NMDA and AMPA receptors binding parameters and gene expression, GAD and GLAST gene expression. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results of NMDA and AMPA receptors. The role of glutamatergic receptors in pancreas was studied using the following parameters; glutamate content, GLAST expression, glutamate receptors - NMDA and AMPA receptor binding and gene expression. Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of diabetes. In the present study SOD assay and GPx gene expression were done to evaluate the activity of antioxidant enzymes in the brain regions and pancreas. NeuroD1 and Pdx1 gene expression were performed in pancreas of experimental rats to evaluate pancreatic islet survival. Gene expression profiles of caspase 8, Bax, and Akt in brain regions and pancreas were studied to understand the possible mechanism behind curcumin and vitamin D3 mediated neuroprotection and islet survival. Gene expression studies of vitamin D3 receptor localisation in the pancreas was done to understand the mechanism of vitamin D3 in insulin secretion. Curcumin and vitamin D3 mediated insulin secretion via Ca2+ release were studied using confocal microscope.
Resumo:
White Spot Syndrome Virus (WSSV) is the most devastating disease affecting shrimp culture around the world. Though, considerable progress has been made in the detection and molecular characterization of WSSV in recent years, information pertaining to immune gene expression in shrimps with respect to WSSV infection remains limited. In this context, the present study was undertaken to understand the differential expression of antimicrobial peptide (AMP) genes in the haemocytes of Penaeus monodon in response to WSSV infection on a time-course basis employing semi-quantitative RT-PCR. The present work analyzes the expression profile of six AMP genes (ALF, crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5), eight WSSV genes (DNA polymerase, endonuclease, immediate early gene, latency related gene, protein kinase, ribonucleotide reductase, thymidine kinase and VP28) and three control genes (18S rRNA, β-actin and ELF) in P. monodon in response to WSSV challenge. Penaeidins were found to be up-regulated during early hours of infection and crustin-3 during late period of infection. However, ALF was found to be up-regulated early to late period of WSSV infection. The present study suggests that AMPs viz. ALF and crustin-3 play an important role in antiviral defense in shrimps. WSSV gene transcripts were detected post-challenge day 1 itself and increased considerably day 5 onwards. Evaluation of the control genes confirmed ELF as the most reliable control gene followed by 18S rRNA and β-actin for gene expression studies in shrimps. This study indicated the role of AMPs in the protection of shrimps against viral infection and their possible control through the up-regulation of AMPs
Resumo:
Coastal Regulation Zone (CRZ) notification was issued by the Ministry of Environment and Forest of Government of India in February 1991 as a part of the Environmental Protection Act of 1986 to protect the coast from eroding and to preserve its natural resources. The initial notification did not distinguish the variability and diversity of various coastal states before enforcing it on the various states and Union Territories. Impact assessments were not carried out to assess its impact on socio-economic life of the coastal population. For the very same reason, it was unnoticed or rather ignored till 1994 when the Supreme Court of India made a land mark judgment on the fate of the coastal aquaculture which by then had established as an economically successful industry in many South Indian States. Coastal aquaculture in its modern form was a prohibited activity within CRZ. Lately, only various stakeholders of the coast realized the real impact of the CRZ rules on their property rights andbusiness. To overcome the initial drawbacks several amendments were made in the regulation to suit regional needs. In 1995, another great transformation took place in the State of Kerala as a part of the reorganization of the local self government institutions into a decentralized three tier system called ‘‘Panchayathi Raj System’’. In 1997, the state government also decided to transfer the power with the required budget outlay to the grass root level panchayats (villages) and municipalities to plan and implement the various projects in their localities with the full participation of the local people by constituting Grama Sabhas (Peoples’ Forum). It is called the ‘‘Peoples’ Planning Campaign’’(Peoples’ Participatory Programme—PPP for Local Level Self-Governance). The management of all the resources including the local natural resources was largely decentralized to the level of local communities and villages. Integrated, sustainable coastal zone management has become the concern of the local population. The paper assesses the socio-economic impact of the centrally enforced CRZ and the state sponsored PPP on the coastal community in Kerala and suggests measures to improve the system and living standards of the coastal people within the framework of CRZ.
Resumo:
In the present work we studied the potential of Bacopa monnieri and Bacoside A treatment to enhance the antioxidant system and support the neuronal survival in the hypoglycemic neonatal brain. For achieving the aim, DAD1 and DAD2 receptors functional regulation, gene expression of growth factors, neuronal survival and apoptotic factors during insulin induced hypoglycemic neonatal brain in rats were studied.
Resumo:
In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.
Resumo:
Die Signaltransduktion in niederen und höheren Zellen gehört zu einem der intensivst beforschten, molekularen Mechanismen. Wie gelangt ein externer Stimulus in die Zelle, bzw. wie wird das entsprechende Signal von der Zelloberfläche in das Zellinnere übertragen? Welche Proteine, die in die Signaltransduktion involviert sind, benötigt die Zelle um auf diesen Stimulus zu reagieren – und wie reagiert die Zelle letztendlich auf dieses extrazelluläre Signal? In den letzten Jahren wurde deutlich, dass diese interaktiven Netzwerke hochkomplex sind und für die molekularbiologische Forschung nur dann einsehbar werden, wenn gezielt Mutanten hergestellt werden, die z.B. Rezeptoren oder interzelluläre Komponenten nicht mehr vorweisen können. Die Erforschung der Signaltransduktionsprozesse ist mittlerweile aus den Laboren der Grundlagenforschung auch in die molekularbiologischen Labors der pharmazeutischen Forschung übertragen worden. Aktuell wurden in den letzten Jahren mehrere Substanzen entwickelt, die z.B. für die Bekämpfung von bösartigen Tumoren geeignet sind, und diese Substanzen zeichnen sich dadurch aus, dass sie Komponenten der Signaltransduktion blockieren, bzw. Botenstoffe der Neoangiogenese aus dem Serum entfernen und so den Tumor „aushungern“. In Dictyostelium discoideum sind bereits zahlreiche Signaltransduktionskomponenten beschrieben worden und es finden sich die bekannten Systeme, wie z.B. Transmembranrezeptoren, G-Proteine oder ras-Proteine, die man aus anderen Organismen kennt wieder. Auch MAP-Kinase-Kaskaden sind vorhanden und verschiedene extrazelluläre Signalstoffe, wie z.B. cAMP, PSF oder CMF sind bekannt und teilweise charakterisiert. Dictyostelium discoideum eignet sich aus diesen Gründen und aus Gründen der biochemischen und zellbiologischen Verfügbarkeit dazu, Prozesse der Signalerkennung und deren Weiterleitung zu den Effektorproteinen zu erforschen. Das Primärziel dieser Arbeit war es, möglichst eine neue Komponente in einem der bereits bekannten Signalwege der Discoidin-Regulation durch Mutagenesen zu zerstören, um diese anschließend beschreiben und charakterisieren zu können.Dazu wurde die sog. REMI-Mutagenese am neu gegründeten Labor der Universität Kassel etabliert und ferner die Zellkulturtechnik von D. discoideum für den Routineeinsatz eingearbeitet. Eine weitere Aufgabe der vorliegenden Arbeit war das Screening bereits bekannter Zellinien, die durch einen auffälligen Phänotyp nach einer Mutagenese isoliert worden waren. Dieses Screening sollte mit Western-blot-Analysen des sog. Discoidin-Proteins durchgeführt werden. Zusätzlich sollten neue Methoden entwickelt werden, die es möglich machen die Interaktionen während des vegetativen Wachstums vom Dictyostelium in Klebsiella-Suspension zu beschreiben.
Resumo:
With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.
Resumo:
A series of vectors for the over-expression of tagged proteins in Dictyostelium were designed, constructed and tested. These vectors allow the addition of an N- or C-terminal tag (GFP, RFP, 3xFLAG, 3xHA, 6xMYC and TAP) with an optimized polylinker sequence and no additional amino acid residues at the N or C terminus. Different selectable markers (Blasticidin and gentamicin) are available as well as an extra chromosomal version; these allow copy number and thus expression level to be controlled, as well as allowing for more options with regard to complementation, co- and super-transformation. Finally, the vectors share standardized cloning sites, allowing a gene of interest to be easily transfered between the different versions of the vectors as experimental requirements evolve. The organisation and dynamics of the Dictyostelium nucleus during the cell cycle was investigated. The centromeric histone H3 (CenH3) variant serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. A number of Dictyostelium histone H3-domain containing proteins as GFP-tagged fusions were expressed and it was found that one of them functions as CenH3 in this species. Like CenH3 from some other species, Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins. The targeting domain, comprising α-helix 2 and loop 1 of the histone fold is required for targeting CenH3 to centromeres. Compared to the targeting domain of other known and putative CenH3 species, Dictyostelium CenH3 has a shorter loop 1 region. The localisation of a variety of histone modifications and histone modifying enzymes was examined. Using fluorescence in situ hybridisation (FISH) and CenH3 chromatin-immunoprecipitation (ChIP) it was shown that the six telocentric centromeres contain all of the DIRS-1 and most of the DDT-A and skipper transposons. During interphase the centromeres remain attached to the centrosome resulting in a single CenH3 cluster which also contains the putative histone H3K9 methyltransferase SuvA, H3K9me3 and HP1 (heterochromatin protein 1). Except for the centromere cluster and a number of small foci at the nuclear periphery opposite the centromeres, the rest of the nucleus is largely devoid of transposons and heterochromatin associated histone modifications. At least some of the small foci correspond to the distal telomeres, suggesting that the chromosomes are organised in a Rabl-like manner. It was found that in contrast to metazoans, loading of CenH3 onto Dictyostelium centromeres occurs in late G2 phase. Transformation of Dictyostelium with vectors carrying the G418 resistance cassette typically results in the vector integrating into the genome in one or a few tandem arrays of approximately a hundred copies. In contrast, plasmids containing a Blasticidin resistance cassette integrate as single or a few copies. The behaviour of transgenes in the nucleus was examined by FISH, and it was found that low copy transgenes show apparently random distribution within the nucleus, while transgenes with more than approximately 10 copies cluster at or immediately adjacent to the centromeres in interphase cells regardless of the actual integration site along the chromosome. During mitosis the transgenes show centromere-like behaviour, and ChIP experiments show that transgenes contain the heterochromatin marker H3K9me2 and the centromeric histone variant H3v1. This clustering, and centromere-like behaviour was not observed on extrachromosomal transgenes, nor on a line where the transgene had integrated into the extrachromosomal rDNA palindrome. This suggests that it is the repetitive nature of the transgenes that causes the centromere-like behaviour. A Dictyostelium homolog of DET1, a protein largely restricted to multicellular eukaryotes where it has a role in developmental regulation was identified. As in other species Dictyostelium DET1 is nuclear localised. In ChIP experiments DET1 was found to bind the promoters of a number of developmentally regulated loci. In contrast to other species where it is an essential protein, loss of DET1 is not lethal in Dictyostelium, although viability is greatly reduced. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed apparent cell type patterning with a bias towards pre-stalk cell types.