972 resultados para Manufacturing methods
Resumo:
Finite-state methods have been adopted widely in computational morphology and related linguistic applications. To enable efficient development of finite-state based linguistic descriptions, these methods should be a freely available resource for academic language research and the language technology industry. The following needs can be identified: (i) a registry that maps the existing approaches, implementations and descriptions, (ii) managing the incompatibilities of the existing tools, (iii) increasing synergy and complementary functionality of the tools, (iv) persistent availability of the tools used to manipulate the archived descriptions, (v) an archive for free finite-state based tools and linguistic descriptions. Addressing these challenges contributes to building a common research infrastructure for advanced language technology.
Resumo:
Graphenes with varying number of layers can be synthesized by using different strategies. Thus, single-layer graphene is prepared by micromechanical cleavage, reduction of single-layer graphene oxide, chemical vapor deposition and other methods. Few-layer graphenes are synthesized by conversion of nanodiamond, arc discharge of graphite and other methods. In this article, we briefly overview the various synthetic methods and the surface, magnetic and electrical properties of the produced graphenes. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Aside from the data on electrical conductivity of graphenes and graphene-polymer composites, we also present the field-effect transistor characteristics of graphenes. Only single-layer reduced graphene oxide exhibits ambipolar properties. The interaction of electron donor and acceptor molecules with few-layer graphene samples is examined in detail.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
A new throttling system far SI engines is examined. The SMD of the fuel droplets in the induction system is measured to evaluate the performance of the new device with respect to the conventional throttle plate arrangement. The measurements are conducted at steady now conditions. A forward angular scattering technique with a He-Ne laser beam is used for droplet size measurement. The experiments are carried out with different mixture strength, stream velocity and throttle positions. It is observed that A/F ratio has no effect on SMD. However, stream velocity and throttle position have a significant influence on SMD. The new throttling method is found to be more effective in reducing the SMD, particularly at low throttle opening and high stream velocity compared to the conventional throttle plate.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
The magnitude and stability of the induced dipolar orientation of 2-methyl-4-nitroaniline (MNA)/poly(methyl methacrylate) (PMMA) guest/host system is investigated. The chromophores are aligned using both the corona discharge and contact electrode poling techniques. The magnitude of order parameter (also an indicator for the second order nonlinear susceptibility) is measured by recording absorbances of the poled (by the two different techniques) and unpoled PMMA films at different concentrations of MNA. Under the same conditions the corona poling technique creates a higher alignment of molecules along the field direction. The time dependence of the second harmonic intensity of the MNA/PMMA film prepared by the two techniques can be described by a Kohlrausch-Williams-Watts stretched exponential. The temperature dependence of the decay time constant is found to generally follow a modified Williams-Landel-Ferry (WLF) or Vogel-Tamann-Fulcher (VTF) equation. The glass transition temperature seems to be the single most important parameter for determining the relaxation time tau(T).
Resumo:
Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.
Resumo:
Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
The various techniques available for the analysis of nonlinear systems subjected to random excitations are briefly introduced and an overview of the progress which has been made in this area of research is presented. The discussion is mainly focused on the basis, scope and limitations of the solution techniques and not on specific applications.
Resumo:
We discuss three methods to correct spherical aberration for a point to point imaging system. First, results obtained using Fermat's principle and the ray tracing method are described briefly. Next, we obtain solutions using Lie algebraic techniques. Even though one cannot always obtain analytical results using this method, it is often more powerful than the first method. The result obtained with this approach is compared and found to agree with the exact result of the first method.
Resumo:
The next generation manufacturing technologies will draw on new developments in geometric modelling. Based on a comprehensive analysis of the desiderata of next generation geometric modellers, we present a critical review of the major modelling paradigms, namely, CSG, B-Rep, non-manifold, and voxel models. We present arguments to support the view that voxel-based modellers have attributes that make it the representation scheme of choice in meeting the emerging requirements of geometric modelling.