923 resultados para Mangrove forest
Resumo:
To study the impact of Amazonian forest fragmentation on the mosquito fauna, an inventory of Culicidae was conducted in the upland forest research areas of the Biological Dynamics of Forest Fragments Project located 60 km north of Manaus, Amazonas, Brazil. The culicid community was sampled monthly between February 2002 and May 2003. CDC light traps, flight interception traps, manual aspiration, and net sweeping were used to capture adult specimens along the edges and within forest fragments of different sizes (1, 10, and 100 ha), in second-growth areas surrounding the fragments and around camps. We collected 5,204 specimens, distributed in 18 genera and 160 species level taxa. A list of mosquito taxa is presented with 145 species found in the survey, including seven new records for Brazil, 16 new records for the state of Amazonas, along with the 15 morphotypes that probably represent undescribed species. No exotic species [Aedes aegypti (L.) and Aedes albopictus (Skuse)] were found within the sampled areas. Several species collected are potential vectors of Plasmodium causing human malaria and of various arboviruses. The epidemiological and ecological implications of mosquito species found are discussed, and the results are compared with other mosquito inventories from the Amazon region.
Resumo:
Two new mosquito species (Diptera: Culicidae), Culex (Melanoconion) phyllados n. sp. and Culex (Melanoconion) brachiatus n. sp. from the state of Amazonas, Brazil, are here validated and described based on morphological features of the male genitalia. Both species are morphologically more similar to both Culex coppenamensis Bonne-Wepster & Bonne and Culex alinkios Sallum & Hutchings than to any other species of the Bastagarius Subgroup of the subgenus Melanoconion. Diagnostic characters for the identification of the adult male of both species are provided.
Resumo:
The origin of tropical forest diversity has been hotly debated for decades. Although specific mechanisms vary, many such explanations propose some vicariance in the distribution of species during glacial cycles and several have been supported by genetic evidence in Neotropical taxa. However, no consensus exists with regard to the extent or time frame of the vicariance events. Here, we analyse the cytochrome oxidase II mitochondrial gene of 250 Sabethes albiprivus B mosquitoes sampled from western Sao Paulo in Brazil. There was very low population structuring among collection sites (Phi(ST) = 0.03, P = 0.04). Historic demographic analyses and the contemporary geographic distribution of genetic diversity suggest that the populations sampled are not at demographic equilibrium. Three distinct mitochondrial clades were observed in the samples, one of which differed significantly in its geographic distribution relative to the other two within a small sampling area (similar to 70 x 35 km). This fact, supported by the inability of maximum likelihood analyses to achieve adequate fits to simple models for the population demography of the species, suggests a more complex history, possibly involving disjunct forest refugia. This hypothesis is supported by a genetic signal of recent population growth, which is expected if population sizes of this forest-obligate insect increased during the forest expansions that followed glacial periods. Although a time frame cannot be reliably inferred for the vicariance event leading to the three genetic clades, molecular clock estimates place this at similar to 1 Myr before present.
Resumo:
Mosquito diversity was determined in an area located on the southern limit of the Atlantic Forest on the north coast of Rio Grande of Sul State. Our major objective was to verify the composition, diversity, and temporal distribution of the mosquito fauna, and the influence of temperature and rainfall. Samplings were performed monthly between December, 2006 and December, 2008, in three biotopes: forest, urban area, and transition area, using CDC light traps and a Nasci vacuum. A total of 2,376 specimens was collected, from which 1,766 (74.32%) were identified as 55 different species belonging to ten genera. Culex lygrus, Aedes serratus, and Aedes nubilus were dominant (eudominant) and constant throughout samplings. The forest environment presented the highest species dominance (D(S) = 0.20), while the transition area showed the highest values of diversity (H` = 2.55) and evenness (J` = 0.85). These two environments were the most similar, according to the Morisita-Horn Index (I(M-H) = 0.35). Bootstrap estimates showed that 87.3% of the species occurring in the region were detected. The seasonal pattern showed a greater abundance of mosquitoes between May and October, indicating the period to intensify entomological surveillance in that area. Journal of Vector Ecology 36 (1): 175-186. 2011.
Resumo:
This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.
Resumo:
In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 +/- 0.19 g m(-3)) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R(2) = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.
Resumo:
We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed similar to 15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest`s carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.
Resumo:
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air + 40 ppb ozone (NF + O-3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF + O-3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40 = 910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF + O-3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF + O-3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r(2) = 0.89; p < 0.05). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Guatteria emarginata and G. stenocarpa, two new species from the Atlantic Forest in Espirito Santo and Bahia, Brazil, are presented here. Guatteria emarginata is characterized by narrowly obovate, verruculose leaves, densely covered with cinereous hairs on the lower side and an emarginate apex. Guatteria stenocarpa is remarkable among the Atlantic Forest species of the genus for its narrowly ellipsoid to cylindric monocarps of 22-25 mm long.
Resumo:
Rudgea jasminoides (Rubiaceae) is a tropical tree species native of the Atlantic Forest in the south of Brazil. Previous studies with leaf cell walls of R. jasminoides showed a different proportion of cross-linked glycans compared to what is usually reported for eudicots. However, due to the difficulties of working with whole plant organs, cell suspensions of R. jasminoides, consisting of predominantly undifferentiated cells with mainly primary cell walls, were used to examine cell walls and extracellular soluble polysaccharides (EP) released into the culture medium. Sugar composition and linkage analysis showed homogalacturonans, xylogalacturonans and arabinogalactans to be the predominant EP. In the cell wall, homogalacturonans and arabinogalactans are the major pectins, and xyloglucans and xylans are the major cross-linking glycans. The presence of xylogalacturonans in the R. jasminoides cell cultures seems to be related to the occurrence of a homogeneous cell suspension with loosely attached cells. Although all alkali extractions from the cell walls yielded amounts of xyloglucan that exceed those of the xylans, the latter was found in a proportion that is higher than what has been usually reported for primary cell walls of most eudicots. The xyloglucan from cell walls of cell suspension cultures of R. jasminoides has low fucosylation levels and high proportion of galactosyl residues, a branching pattern commonly found in storage cell-wall xyloglucans.
Resumo:
During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.
Resumo:
The Atlantic rainforest has the second highest biodiversity in Brazil. It has been shrinking rapidly in area as a result of intensive deforestation, and only 7% of the original cover now remains, as isolated patches or in ecological reserves. In order to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate relevant populations and extracted DNA from fresh leaves from 26 populations. The present-day distribution of endemic Podocarpus populations shows that they are widely dispersed across eastern Brazil, and that the expansion of Podocarpus recorded in single Amazonian pollen records may have originated from either western or eastern populations. Genetic analysis enabled us to determine the boundaries of their regional expansion: northern and central populations of P. sellowii appeared between 5 degrees and 15 degrees S some 16,000 years ago; populations of P lambertii or sellowii have appeared between 15 degrees and 23 degrees S at different times since the last glaciation at least; and P lambertii appeared between 23 degrees and 30 degrees S during the recent expansion of Araucaria forests. The combination of botanical, pollen, and molecular analyses proved to be a rapid means of inferring distribution boundaries for sparse populations and their regional evolution within tropical ecosystems. Today the rainforest refugia we identified have become hotspots that are crucial to the survival of the Atlantic forest under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of future climate change.
Resumo:
The Atlantic Forest deserves special attention due to its high level of species endemism and degree of threat. As in other tropical biomes, there is little information about the ecology of the organisms that occur there. The objectives of this study were to verify how fruit-feeding butterflies are distributed through time, and the relation with meteorological conditions. Species richness and Shannon index were partitioned additively at the monthly level, and beta diversity, used as a hierarchical measure of temporal species turnover, was calculated among months, trimesters, and semesters. Circular analysis was used to verify how butterflies are distributed along seasons and its relation with meteorological conditions. We sampled 6488 individuals of 73 species. Temporal diversity of butterflies was more grouped than expected by chance among the months of each trimester. Circular analyses revealed that diversity is concentrated in hot months (September-March), with the subfamily Brassolinae strongly concentrated in February-March. Average temperature was correlated with total abundance of butterflies, abundance of Biblidinae, Brassolinae and Morphinae, and richness of Satyrinae. The present results show that 3mo of sampling between September and March is enough to produce a nonbiased sample of the local assemblage of butterflies, containing at least 70 percent of the richness and 25 percent of abundance. The influence of temperature on sampling is probably related to butterfly physiology. Moreover, temperature affects resource availability for larvae and adults, which is higher in hot months. The difference in seasonality patterns among subfamilies is probably a consequence of different evolutionary pressures through time.
Resumo:
Deforestation in Brazilian Amazonia accounts for a disproportionate global scale fraction of both carbon emissions from biomass burning and biodiversity erosion through habitat loss. Here we use field- and remote-sensing data to examine the effects of private landholding size on the amount and type of forest cover retained within economically active rural properties in an aging southern Amazonian deforestation frontier. Data on both upland and riparian forest cover from a survey of 300 rural properties indicated that 49.4% (SD = 29.0%) of the total forest cover was maintained as of 2007. and that property size is a key regional-scale determinant of patterns of deforestation and land-use change. Small properties (<= 150 ha) retained a lower proportion of forest (20.7%, SD = 17.6) than did large properties (>150 ha; 55.6%, SD = 27.2). Generalized linear models showed that property size had a positive effect on remaining areas of both upland and total forest cover. Using a Landsat time-series, the age of first clear-cutting that could be mapped within the boundaries of each property had a negative effect on the proportion of upland, riparian, and total forest cover retained. Based on these data, we show contrasts in land-use strategies between smallholders and largeholders, as well as differences in compliance with legal requirements in relation to minimum forest cover set-asides within private landholdings. This suggests that property size structure must be explicitly considered in landscape-scale conservation planning initiatives guiding agro-pastoral frontier expansion into remaining areas of tropical forest. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e. g., reproductive mode and habitat preference).