965 resultados para Magnetic recording media
Resumo:
Objectives: The aim of this study was to evaluate the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on carotid plaque inflammation as determined by ultrasmall superparamagnetic iron oxide (USPIO)-enhanced carotid magnetic resonance imaging (MRI). The hypothesis was that treatment with 80 mg atorvastatin would demonstrate quantifiable changes in USPIO-enhanced MRI-defined inflammation within the first 3 months of therapy. Background: Preliminary studies indicate that USPIO-enhanced MRI can identify macrophage infiltration in human carotid atheroma in vivo and hence may be a surrogate marker of plaque inflammation. Methods: Forty-seven patients with carotid stenosis >40% on duplex ultrasonography and who demonstrated intraplaque accumulation of USPIO on MRI at baseline were randomly assigned in a balanced, double-blind manner to either 10 or 80 mg atorvastatin daily for 12 weeks. Baseline statin therapy was equivalent to 10 mg of atorvastatin or less. The primary end point was change from baseline in signal intensity (ΔSI) on USPIO-enhanced MRI in carotid plaque at 6 and 12 weeks. Results: Twenty patients completed 12 weeks of treatment in each group. A significant reduction from baseline in USPIO-defined inflammation was observed in the 80-mg group at both 6 weeks (ΔSI 0.13; p = 0.0003) and at 12 weeks (ΔSI 0.20; p < 0.0001). No difference was observed with the low-dose regimen. The 80-mg atorvastatin dose significantly reduced total cholesterol by 15% (p = 0.0003) and low-density lipoprotein cholesterol by 29% (p = 0.0001) at 12 weeks. Conclusions: Aggressive lipid-lowering therapy over a 3-month period is associated with significant reduction in USPIO-defined inflammation. USPIO-enhanced MRI methodology may be a useful imaging biomarker for the screening and assessment of therapeutic response to "anti-inflammatory" interventions in patients with atherosclerotic lesions. (Effects of Atorvastatin on Macrophage Activity and Plaque Inflammation Using Magnetic Resonance Imaging [ATHEROMA]; NCT00368589).
Resumo:
Purpose: To quantify the uncertainties of carotid plaque morphology reconstruction based on patient-specific multispectral in vivo magnetic resonance imaging (MRI) and their impacts on the plaque stress analysis. Materials and Methods: In this study, three independent investigators were invited to reconstruct the carotid bifurcation with plaque based on MR images from two subjects to study the geometry reconstruction reproducibility. Finite element stress analyses were performed on the carotid bifurcations, as well as the models with artificially modified plaque geometries to mimic the image segmentation uncertainties, to study the impacts of the uncertainties to the stress prediction. Results: Plaque reconstruction reproducibility was generally high in the study. The uncertainties among interobservers are around one or the subpixel level. It also shows that the predicted stress is relatively less sensitive to the arterial wall segmentation uncertainties, and more affected by the accuracy of lipid region definition. For a model with lipid core region artificially increased by adding one pixel on the lipid region boundary, it will significantly increase the maximum Von Mises Stress in fibrous cap (>100%) compared with the baseline model for all subjects. Conclusion: The current in vivo MRI in the carotid plaque could provide useful and reliable information for plaque morphology. The accuracy of stress analysis based on plaque geometry is subject to MRI quality. The improved resolution/quality in plaque imaging with newly developed MRI protocols would generate more realistic stress predictions.
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.
Resumo:
Introduction: Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The aim of this study was to explore whether there is a difference in the degree of Magnetic Resonance (MR) defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles, within carotid atheroma in completely asymptomatic individuals and the asymptomatic carotid stenosis in a cohort of patients undergoing coronary artery bypass grafting (CABG). Methods: 10 patients awaiting CABG with asymptomatic carotid disease and 10 completely asymptomatic individuals with no documented coronary artery disease underwent multi-sequence MR imaging before and 36 hours post USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant, normalised to adjacent muscle signal, was calculated following USPIO administration. Results: The mean percentage of quadrants showing signal loss was 94% in the CABG group, compared to 24% in the completely asymptomatic individuals (p < 0.001). The carotid plaques from the CABG patients showed a significant mean signal intensity decrease of 16.4% after USPIO infusion (95% CI 10.6% to 22.2%; p < 0.001). The truly asymptomatic plaques showed a mean signal intensity increase (i.e. enhancement) after USPIO infusion of 8.4% (95% CI 2.6% to 14.2%; p = 0.007). The mean signal difference between the two groups was 24.9% (95% CI 16.7% to 33.0%; p < 0.001). Conclusions: These findings are consistent with the hypothesis that inflammatory atheroma is a systemic disease. The carotid territory is more likely to take up USPIO if another vascular territory is symptomatic.
Resumo:
Object. Individuals with carotid atherosclerosis develop symptoms following rupture of vulnerable plaques. Biomechanical stresses within this plaque may increase vulnerability to rupture. In this report the authors describe the use of in vivo carotid plaque imaging and computational mechanics to document the magnitude and distribution of intrinsic plaque stresses. Methods. Ten (five symptomatic and five asymptomatic) individuals underwent plaque characterization magnetic resonance (MR) imaging. Plaque geometry and composition were determined by multisequence review. Intrinsic plaque stress profiles were generated from 3D meshes by using finite element computational analysis. Differences in principal (shear) stress between normal and diseased sections of the carotid artery and between symptomatic and asymptomatic plaques were noted. Results. There was a significant difference in peak principal stress between diseased and nondiseased segments of the artery (mean difference 537.65 kPa, p < 0.05). Symptomatic plaques had higher mean stresses than asymptomatic plaques (627.6 kPa compared with 370.2 kPa, p = 0.05), which were independent of luminal stenosis and plaque composition. Conclusions. Significant differences in plaque stress exist between plaques from symptomatic individuals and those from asymptomatic individuals. The MR imaging-based computational analysis may therefore be a useful aid to identification of vulnerable plaques in vivo.
Resumo:
Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.
Resumo:
BACKGROUND AND PURPOSE It is well known that the vulnerable atheromatous plaque has a thin, fibrous cap and large lipid core with associated inflammation. This inflammation can be detected on MRI with use of a contrast medium, Sinerem, an ultrasmall superparamagnetic iron oxide (USPIO). Although the incidence of macrophage activity in asymptomatic disease appears low, we aimed to explore the incidence of MRI-defined inflammation in asymptomatic plaques in patients with known contralateral symptomatic disease. METHODS Twenty symptomatic patients underwent multisequence MRI before and 36 hours after USPIO infusion. Images were manually segmented into quadrants, and the signal change in each quadrant was calculated after USPIO administration. A mixed mathematical model was developed to compare the mean signal change across all quadrants in the 2 groups. Patients had a mean symptomatic stenosis of 77% compared with 46% on their asymptomatic side, as measured by conventional angiography. RESULTS There were 11 (55%) men, and the median age was 72 years (range, 53 to 84 years). All patients had risk factors consistent with severe atherosclerotic disease. All symptomatic carotid stenoses had inflammation, as evaluated by USPIO-enhanced imaging. On the contralateral sides, inflammatory activity was found in 19 (95%) patients. Contralaterally, there were 163 quadrants (57%) with a signal loss after USPIO when compared with 217 quadrants (71%) on the symptomatic side (P=0.007). CONCLUSIONS - This study adds weight to the argument that atherosclerosis is a truly systemic disease. It suggests that investigation of the contralateral side in patients with symptomatic carotid stenosis can demonstrate inflammation in 95% of plaques, despite a mean stenosis of only 46%. Thus, inflammatory activity may be a significant risk factor in asymptomatic disease in patients who have known contralateral symptomatic disease. Patients with symptomatic carotid disease should have their contralateral carotid artery followed up.
Resumo:
We investigate the evolution of rotation period and spindown age of a pulsar whose surface magnetic field undergoes a phase of growth. Application of these results to the Crab pulsar strongly indicates that its parameters cannot be accounted for by the field growth theories.
Resumo:
Social media platforms such as Facebook and Twitter are now widely recognised as playing an increasingly important role in the dissemination of information during crisis events. They are used by emergency management organisations as well as by the public to share information and advice. However, the official use of social media for crisis communication within emergency management organisations is still relatively new and ad hoc, rather than being systematically embedded within or effectively coordinated across agencies. This policy report suggests a more effectively coordinated approach to leverage social media use, involving stronger networking between social media staff within emergency management organisations. This could be realised by establishing a national network of social media practitioners managed by the Australia-New Zealand Emergency Management Committee (ANZEMC), reinforced by a Federal government task force that promotes further policy initiatives in this space.
Resumo:
Campaigning in Australian election campaigns at local, state, and federal levels is fundamentally affected by the fact that voting is compulsory in Australia, with citizens who are found to have failed to cast their vote subject to fines. This means that - contrary to the situation in most other nations – elections are decided not by which candidate or party has managed to encourage the largest number of nominal supporters to make the effort to cast their vote, but by some 10-20% of genuine ‘swinging voters’ who change their party preferences from one election to the next. Political campaigning is thus aimed less at existing party supporters (so-called ‘rusted on’ voters whose continued support for the party is essentially taken for granted) than at this genuinely undecided middle of the electorate. Over the past decades, this has resulted in a comparatively timid, vague campaigning style from both major party blocs (the progressive Australian Labor Party [ALP] and the conservative Coalition of the Liberal and National Parties [L/NP]). Election commitments that run the risk of being seen as too partisan and ideological are avoided as they could scare away swinging voters, and recent elections have been fought as much (or more) on the basis of party leaders’ perceived personas as they have on stated policies, even though Australia uses a parliamentary system in which the Prime Minister and state Premiers are elected by their party room rather than directly by voters. At the same time, this perceived lack of distinctiveness in policies between the major parties has also enabled the emergence of new, smaller parties which (under Australia’s Westminster-derived political system) have no hope of gaining a parliamentary majority but could, in a close election, come to hold the balance of power and thus exert disproportionate influence on a government which relies on their support.
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stratified Boussinesq fluid in the presence of a rigid boundary is studied, A jump in the magnetic field is introduced at a level different from the velocity discontinuity. New unstable modes in addition to the Kelvin-Helmhottz mode are found. The wavelengths of these unstable modes are close to the wavelengths of internal Alfv6n gravity waves in the atmospher.
Resumo:
A set of coils has been designed and constructed for generating magnetic field gradients for a Faraday magnetometer. We have obtained a gradient of magnitude -1 1 kOe m-' (8.75 x lo5 A m-') in an air gap of 42 mm for a current of 12 A passing through the coils.
Resumo:
Precarious Creativity examines the seismic changes confronting media workers in an age of globalization and corporate conglomeration. This pathbreaking anthology peeks behind the hype and supposed glamor of screen media industries to reveal the intensifying pressures and challenges confronting actors, editors, electricians, and others. The authors take on pressing conceptual and methodological issues while also providing insightful case studies of workplace dynamics regarding creativity, collaboration, exploitation, and cultural difference. Furthermore, it examines working conditions and organizing efforts on all six continents, offering broad-ranging and comprehensive analysis of contemporary screen media labor in such places as Lagos, Prague, Hollywood, and Hyderabad. The collection also examines labor conditions across a range of job categories that includes, for example, visual effects, production services, and adult entertainment. With contributions from such leading scholars as John Caldwell, Vicki Mayer, Herman Gray, and Tejaswini Ganti, Precarious Creativity offers timely critiques of media globalization while also intervening in broader debates about labor, creativity, and precarity.