961 resultados para MAPPING MOLECULAR NETWORKS
Resumo:
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Resumo:
Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
Using benthic habitat data from the Florida Keys (USA), we demonstrate how siting algorithms can help identify potential networks of marine reserves that comprehensively represent target habitat types. We applied a flexible optimization tool-simulated annealing-to represent a fixed proportion of different marine habitat types within a geographic area. We investigated the relative influence of spatial information, planning-unit size, detail of habitat classification, and magnitude of the overall conservation goal on the resulting network scenarios. With this method, we were able to identify many adequate reserve systems that met the conservation goals, e.g., representing at least 20% of each conservation target (i.e., habitat type) while fulfilling the overall aim of minimizing the system area and perimeter. One of the most useful types of information provided by this siting algorithm comes from an irreplaceability analysis, which is a count of the number of, times unique planning units were included in reserve system scenarios. This analysis indicated that many different combinations of sites produced networks that met the conservation goals. While individual 1-km(2) areas were fairly interchangeable, the irreplaceability analysis highlighted larger areas within the planning region that were chosen consistently to meet the goals incorporated into the algorithm. Additionally, we found that reserve systems designed with a high degree of spatial clustering tended to have considerably less perimeter and larger overall areas in reserve-a configuration that may be preferable particularly for sociopolitical reasons. This exercise illustrates the value of using the simulated annealing algorithm to help site marine reserves: the approach makes efficient use of;available resources, can be used interactively by conservation decision makers, and offers biologically suitable alternative networks from which an effective system of marine reserves can be crafted.
Resumo:
A number of full-length cDNA clones of Kunjin virus (KUN) were previously prepared; it was shown that two of them, pAKUN and FLSDX, differed in specific infectivities of corresponding in vitro transcribed RNAs by similar to100,000-fold (A. A. Khromykh et al., J. Virol. 72:7270-7279, 1998). In this study, we analyzed a possible genetic determinant(s) of the observed differences in infectivity initially by sequencing the entire cDNAs of both clones and comparing them with the published sequence of the parental KUN strain MRM61C. We found six common amino acid residues in both cDNA clones that were different from those in the published MRM61C sequence but were similar to those in the published sequences of other flaviviruses from the same subgroup. pAKUN clone had four additional codon changes, i.e., Ile59 to Asn and Arg175 to Lys in NS2A and Tyr518 to His and Ser557 to Pro in NS3. Three of these substitutions except the previously shown marker mutation, Arg175 to Lys in NS2A, reverted to the wild-type sequence in the virus eventually recovered from pAKUN RNA-transfected BHK cells, demonstrating the functional importance of these residues in viral replication and/or viral assembly. Exchange of corresponding DNA fragments between pAKUN and FLSDX clones and site-directed mutagenesis revealed that the Tyr518-to-His mutation in NS3 was responsible for an similar to5-fold decrease in specific infectivity of transcribed RNA, while the Ile59-to-Asn mutation in NS2A completely blocked virus production. Correction of the Asn59 in pAKUN NS2A to the wild-type lie residue resulted in complete restoration of RNA infectivity. Replication of KUN replicon RNA with an Ile59-to-Asn substitution in NS2A and with a Ser557-to-Pro substitution in NS3 was not affected, while the Tyr518-to-His substitution in NS3 led to severe inhibition of RNA replication. The impaired function of the mutated NS2A in production of infectious virus was complemented in trans by the helper wild-type NS2A produced from the KUN replicon RNA. However, replicon RNA with mutated NS2A could not be packaged in trans by the KUN structural proteins. The data demonstrated essential roles for the KUN nonstructural protein NS2A in virus assembly and for NS3 in RNA replication and identified specific single-amino-acid residues involved in these functions.
Resumo:
The recent description of the respiratory pathogen human metapneumovirus (hMPV) has highlighted a deficiency in current diagnostic techniques for viral agents associated with acute lower respiratory tract infections. We describe two novel approaches to the detection of viral RNA by use of reverse transcriptase PCR (RT-PCR). The PCR products were identified after capture onto a solid-phase medium by hybridization with a sequence-specific, biotinylated oligonucleotide probe. The assay was applied to the screening of 329 nasopharyngeal aspirates sampled from patients suffering from respiratory tract disease. These samples were negative for other common microbial causes of respiratory tract disease. We were able to detect hMPV sequences in 32 (9.7%) samples collected from Australian patients during 2001. To further reduce result turnaround times we designed a fluorogenic TaqMan oligoprobe and combined it with the existing primers for use on the LightCycler platform. The real-time RT-PCR proved to be highly reproducible and detected hMPV in an additional 6 out of 62 samples (9.6%) tested during the comparison of the two diagnostic approaches. We found the real-time RT-PCR to be the test of choice for future investigation of samples for hMPV due to its speed, reproducibility, specificity, and sensitivity.
Resumo:
Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The use of human brain tissue obtained at autopsy for neurochemical, pharmacological and physiological analyses is reviewed. RNA and protein samples have been found suitable for expression profiling by techniques that include RT-PCR, cDNA microarrays, western blotting, immunohistochemistry and proteomics. The rapid development of molecular biological techniques has increased the impetus for this work to be applied to studies of brain disease. It has been shown that most nucleic acids and proteins are reasonably stable post-mortem. However, their abundance and integrity can exhibit marked intra- and intercase variability, making comparisons between case-groups difficult. Variability can reveal important functional and biochemical information. The correct interpretation of neurochemical data must take into account such factors as age, gender, ethnicity, medicative history, immediate ante-mortem status, agonal state and post-mortem and post-autopsy intervals. Here we consider issues associated with the sampling of DNA, RNA and proteins using human autopsy brain tissue in relation to various ante- and post-mortem factors. We conclude that valid and practical measures of a variety of parameters may be made in human brain tissue, provided that specific factors are controlled.
Resumo:
A new modeling approach-multiple mapping conditioning (MMC)-is introduced to treat mixing and reaction in turbulent flows. The model combines the advantages of the probability density function and the conditional moment closure methods and is based on a certain generalization of the mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The validity of the closuring hypothesis of the model is demonstrated by a comparison with direct numerical simulation results for the three-stream mixing problem. (C) 2003 American Institute of Physics.
Resumo:
Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.