906 resultados para Loss aversion
Resumo:
The recession of mountain glaciers around the world has been linked to anthropogenic climate change and small glaciers (e.g. < 2 km2) are thought to be particularly vulnerable, with reports of their disappearance from several regions. However, the response of small glaciers to climate change can be modulated by non-climatic factors such as topography and debris cover and there remain a number of regions where their recent change has evaded scrutiny. This paper presents results of the first multi-year remote sensing survey of glaciers in the Kodar Mountains, the only glaciers in SE Siberia, which we compare to previous glacier inventories from this continental setting that reported total glacier areas of 18.8 km2 in ca. 1963 (12.6 km2 of exposed ice) and 15.5 km2 in 1974 (12 km2 of exposed ice). Mapping their debris-covered termini is difficult but delineation of debris-free ice on Landsat imagery reveals 34 glaciers with a total area of 11.72 ± 0.72 km2 in 1995, followed by a reduction to 9.53 ± 0.29 km2 in 2001 and 7.01 ± 0.23 km2 in 2010. This represents a ~ 44% decrease in exposed glacier ice between ca. 1963 and 2010, but with 40% lost since 1995 and with individual glaciers losing as much as 93% of their exposed ice. Thus, although continental glaciers are generally thought to be less sensitive than their maritime counterparts, a recent acceleration in shrinkage of exposed ice has taken place and we note its coincidence with a strong summer warming trend in the region initiated at the start of the 1980s. Whilst smaller and shorter glaciers have, proportionally, tended to shrink more rapidly, we find no statistically significant relationship between shrinkage and elevation characteristics, aspect or solar radiation. This is probably due to the small sample size, limited elevation range, and topographic setting of the glaciers in deep valleys-heads. Furthermore, many of the glaciers possess debris-covered termini and it is likely that the ablation of buried ice is lagging the shrinkage of exposed ice, such that a growth in the proportion of debris cover is occurring, as observed elsewhere. If recent trends continue, we hypothesise that glaciers could evolve into a type of rock glacier within the next few decades, introducing additional complexity in their response and delaying their potential demise.
Resumo:
We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which there is rapid loss of Arctic summer sea ice in the first half of the 21st century. The issue is addressed by coupling a chemistry climate model to an ocean general circulation model and performing simulations of ozone recovery with, and without, an external perturbation designed to cause a rapid and complete loss of summertime Arctic sea ice. Under this extreme perturbation, the stratospheric response takes the form of a springtime polar cooling which is dynamical rather than radiative in origin, and is caused by reduced wave forcing from the troposphere. The response lags the onset of the sea-ice perturbation by about one decade and lasts for more than two decades, and is associated with an enhanced weakening of the North Atlantic meridional overturning circulation. The stratospheric dynamical response leads to a 10 DU reduction in polar column ozone, which is statistically robust. While this represents a modest loss, it has the potential to induce a delay of roughly one decade in Arctic ozone recovery estimates made in the 2006 Scientific Assessment of Ozone Depletion.
Resumo:
Developing models to predict the effects of social and economic change on agricultural landscapes is an important challenge. Model development often involves making decisions about which aspects of the system require detailed description and which are reasonably insensitive to the assumptions. However, important components of the system are often left out because parameter estimates are unavailable. In particular, measurements of the relative influence of different objectives, such as risk, environmental management, on farmer decision making, have proven difficult to quantify. We describe a model that can make predictions of land use on the basis of profit alone or with the inclusion of explicit additional objectives. Importantly, our model is specifically designed to use parameter estimates for additional objectives obtained via farmer interviews. By statistically comparing the outputs of this model with a large farm-level land-use data set, we show that cropping patterns in the United Kingdom contain a significant contribution from farmer’s preference for objectives other than profit. In particular, we found that risk aversion had an effect on the accuracy of model predictions, whereas preference for a particular number of crops grown was less important. While nonprofit objectives have frequently been identified as factors in farmers’ decision making, our results take this analysis further by demonstrating the relationship between these preferences and actual cropping patterns.
Resumo:
Simulations of ozone loss rates using a three-dimensional chemical transport model and a box model during recent Antarctic and Arctic winters are compared with experimental loss rates. The study focused on the Antarctic winter 2003, during which the first Antarctic Match campaign was organized, and on Arctic winters 1999/2000, 2002/2003. The maximum ozone loss rates retrieved by the Match technique for the winters and levels studied reached 6 ppbv/sunlit hour and both types of simulations could generally reproduce the observations at 2-sigma error bar level. In some cases, for example, for the Arctic winter 2002/2003 at 475 K level, an excellent agreement within 1-sigma standard deviation level was obtained. An overestimation was also found with the box model simulation at some isentropic levels for the Antarctic winter and the Arctic winter 1999/2000, indicating an overestimation of chlorine activation in the model. Loss rates in the Antarctic show signs of saturation in September, which have to be considered in the comparison. Sensitivity tests were performed with the box model in order to assess the impact of kinetic parameters of the ClO-Cl2O2 catalytic cycle and total bromine content on the ozone loss rate. These tests resulted in a maximum change in ozone loss rates of 1.2 ppbv/sunlit hour, generally in high solar zenith angle conditions. In some cases, a better agreement was achieved with fastest photolysis of Cl2O2 and additional source of total inorganic bromine but at the expense of overestimation of smaller ozone loss rates derived later in the winter.
Resumo:
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.
Resumo:
Purpose – This paper aims to articulate strategic dilemmas faced by a Chief Executive of a highly successful company and how such dilemmas were resolved. Design/methodology/approach – The case is based on a semi-structured interview with Mr Jeremy Darroch – Chief Executive of BSkyB – and analysis of documentary evidence. Findings – It is often difficult to implement strategies that simultaneously yield high organic growth rate, innovation, and a healthy balance-sheet. The paper sheds light on how Sky has met this challenge. Research limitations/implications – The research offers a unique insight into the views of a principal strategist and articulates the background to offer context, however, because of its design the findings are not generalisable. Originality/value – Very few articles offer insight into the thinking of those with principal responsibility for design and delivery of strategy. This paper offers such an insight based on a detailed interview with a highly successful Chief Executive.
Resumo:
Possible changes in the frequency and intensity of windstorms under future climate conditions during the 21st century are investigated based on an ECHAM5 GCM multi-scenario ensemble. The intensity of a storm is quantified by the associated estimated loss derived with using an empirical model. The geographical focus is ‘Core Europe’, which comprises countries of Western Europe. Possible changes of losses are analysed by comparing ECHAM5 GCM data for recent (20C, 1960 to 2000) and future climate conditions (B1, A1B, A2; 2060 to 2100), each with 3 ensemble members. Changes are quantified using both rank statistics and return periods (RP) estimated by fitting an extreme value distribution using the peak over threshold method to potential storm losses. The estimated losses for ECHAM5 20C and reanalysis events show similar statistical features in terms of return periods. Under future climate conditions, all climate scenarios show an increase in both frequency and magnitude of potential losses caused by windstorms for Core Europe. Future losses that are double the highest ECHAM5 20C loss are identified for some countries. While positive changes of ranking are significant for many countries and multiple scenarios, significantly shorter RPs are mostly found under the A2 scenario for return levels correspondent to 20 yr losses or less. The emergence time of the statistically significant changes in loss varies from 2027 to 2100. These results imply an increased risk of occurrence of windstorm-associated losses, which can be largely attributed to changes in the meteorological severity of the events. Additionally, factors such as changes in the cyclone paths and in the location of the wind signatures relative to highly populated areas are also important to explain the changes in estimated losses.
Resumo:
Winter storms of the midlatitudes are an important factor for property losses caused by natural hazards over Europe. The storm series in early 1990 and late 1999 led to enormous economic damages and insured claims. Although significant trends in North Atlantic/European storm activity have not been identified for the last few decades, recent studies provide evidence that under anthropogenic climate change the number of extreme storms could increase, whereas the total number of cyclones may be slightly reduced. In this study, loss potentials derived from an ensemble of climate models using a simple storm damage model under climate change conditions are shown. For the United Kingdom and Germany ensemble-mean storm-related losses are found to increase by up to 37%. Furthermore, the interannual variability of extreme events will increase leading to a higher risk of extreme storm activity and related losses.
Resumo:
A simple storm loss model is applied to an ensemble of ECHAM5/MPI-OM1 GCM simulations in order to estimate changes of insured loss potentials over Europe in the 21st century. Losses are computed based on the daily maximum wind speed for each grid point. The calibration of the loss model is performed using wind data from the ERA40-Reanalysis and German loss data. The obtained annual losses for the present climate conditions (20C, three realisations) reproduce the statistical features of the historical insurance loss data for Germany. The climate change experiments correspond to the SRES-Scenarios A1B and A2, and for each of them three realisations are considered. On average, insured loss potentials increase for all analysed European regions at the end of the 21st century. Changes are largest for Germany and France, and lowest for Portugal/Spain. Additionally, the spread between the single realisations is large, ranging e.g. for Germany from −4% to +43% in terms of mean annual loss. Moreover, almost all simulations show an increasing interannual variability of storm damage. This assessment is even more pronounced if no adaptation of building structure to climate change is considered. The increased loss potentials are linked with enhanced values for the high percentiles of surface wind maxima over Western and Central Europe, which in turn are associated with an enhanced number and increased intensity of extreme cyclones over the British Isles and the North Sea.
Resumo:
In Europe, agri-environmental schemes (AES) have been introduced in response to concerns about farmland biodiversity declines. Yet, as AES have delivered variable results, a better understanding of what determines their success or failure is urgently needed. Focusing on pollinating insects, we quantitatively reviewed how environmental factors affect the effectiveness of AES. Our results suggest that the ecological contrast in floral resources created by schemes drives the response of pollinators to AES but that this response is moderated by landscape context and farmland type, with more positive responses in croplands (vs. grasslands) located in simple (vs. cleared or complex) landscapes. These findings inform us how to promote pollinators and associated pollination services in species-poor landscapes. They do not, however, present viable strategies to mitigate loss of threatened or endangered species. This indicates that the objectives and design of AES should distinguish more clearly between biodiversity conservation and delivery of ecosystem services.
Resumo:
Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.
Resumo:
We apply experimental methods to study the role of risk aversion on players’ behavior in repeated prisoners’ dilemma games. Faced with quantitatively equal discount factors, the most risk-averse players will choose Nash strategies more often in the presence of uncertainty than when future profits are discounted in a deterministic way. Overall, we find that risk aversion relates negatively with the frequency of collusive outcomes.
Resumo:
Recent literature has suggested that macroeconomic forecasters may have asymmetric loss functions, and that there may be heterogeneity across forecasters in the degree to which they weigh under- and over-predictions. Using an individual-level analysis that exploits the Survey of Professional Forecasters respondents’ histogram forecasts, we find little evidence of asymmetric loss for the inflation forecasters
Resumo:
Rationale: Opioid antagonism reduces the consumption of palatable foods in humans but the neural substrates implicated in these effects are less well understood. Objectives: The aim of the present study was to examine the effects of the opioid antagonist, naltrexone, on neural response to rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging (fMRI) to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 20 healthy volunteers who received a single oral dose of naltrexone (50 mg) and placebo in a double-blind, repeated-measures cross-over, design. Results: Relative to placebo, naltrexone decreased reward activation to chocolate in the dorsal anterior cingulate cortex and caudate, and increased aversive-related activation to unpleasant strawberry in the amygdala and anterior insula. Conclusions: These findings suggest that modulation of key brain areas involved in reward processing, cognitive control and habit formation such as the dorsal anterior cingulate cortex (dACC) and caudate might underlie reduction in food intake with opioid antagonism. Furthermore we show for the first time that naltrexone can increase activations related to aversive food stimuli. These results support further investigation of opioid treatments in obesity.
Resumo:
The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry–climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the effects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogen-induced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.