866 resultados para Lipid Metabolism
RESEARCH ON ELECTRICAL-PROPERTIES OF AMPHIPHILIC LIPID-MEMBRANES BY MEANS OF INTERDIGITAL ELECTRODES
Resumo:
Lipids are the main component of all cell membranes and also important mimetic materials. Moreover, it was found recently that they can be used as sensitive membranes for olfactory and taste sensors. Hence the understanding of lipid resistance is important both in sensors and in life sciences. Thirteen lipids were examined by means of interdigital electrodes with narrow gaps of 20-50 mu m, made by IC technology. The membrane lateral resistance in air, resisting electrical voltage, the influence of impurities on resistance and the resistance change in acetic acid vapour are presented for the first time. It is shown that the electrical resistivity for self-assembling lipids depends on their duration of being in an electric field and the content of the conductive impurities. The interdigital electrode is a transducer as well as a powerful tool for researching biomaterials and mimicking materials. The conducting mechanism of lipids is discussed. This method is also suitable for some polymer membranes.
Resumo:
IEECAS SKLLQG
Resumo:
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 mu mol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol-chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism.
Resumo:
Cytochrome P450 3A4 (CYP3A4), a major member of cytochrome P450 isoenzymes, metabolizes the majority of steroids in 6beta-position. For the purpose of determining requisite structural features of a series of structurally related steroids for CYP3A4-mediated metabolism, three-dimensional pharmacophore modeling as well as electrotopological state map were conducted for 15 steroids. Though prior studies speculated that the chemical reactivity of the allylic 6beta-position might have a greater influence on CYP3A4 selective 6-hydroxylation than steric constraints in the enzyme, our results reveal that for CYP3A4 steroidal substrates, it is not the chemical reactivity of atoms at 6beta-site, but the pharmacophoric features, i.e. the two hydrophobic rings together with two H-bond donors, that act as the key factors responsible for detemining the CYP3A4 selective 6-hydroxylation of steroids. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. (C) 2004 Elsevier Inc. All rights reserved.