873 resultados para Linear models (Statistics)
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.
Resumo:
The Hybrid approach introduced by the authors for at-site modeling of annual and periodic streamflows in earlier works is extended to simulate multi-site multi-season streamflows. It bears significance in integrated river basin planning studies. This hybrid model involves: (i) partial pre-whitening of standardized multi-season streamflows at each site using a parsimonious linear periodic model; (ii) contemporaneous resampling of the resulting residuals with an appropriate block size, using moving block bootstrap (non-parametric, NP) technique; and (iii) post-blackening the bootstrapped innovation series at each site, by adding the corresponding parametric model component for the site, to obtain generated streamflows at each of the sites. It gains significantly by effectively utilizing the merits of both parametric and NP models. It is able to reproduce various statistics, including the dependence relationships at both spatial and temporal levels without using any normalizing transformations and/or adjustment procedures. The potential of the hybrid model in reproducing a wide variety of statistics including the run characteristics, is demonstrated through an application for multi-site streamflow generation in the Upper Cauvery river basin, Southern India. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD at finite temperature and density. We consider chiral sector described either using linear sigma model or Nambu-Jona-Lasinio model and study the phase diagram and determine the location of the critical point as a function of the explicit chiral symmetry breaking (i.e. the bare quark mass $m_q$). We also discuss the possible emergence of the quarkyonic phase in this model.
Resumo:
Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.
Resumo:
Financial time series tend to behave in a manner that is not directly drawn from a normal distribution. Asymmetries and nonlinearities are usually seen and these characteristics need to be taken into account. To make forecasts and predictions of future return and risk is rather complicated. The existing models for predicting risk are of help to a certain degree, but the complexity in financial time series data makes it difficult. The introduction of nonlinearities and asymmetries for the purpose of better models and forecasts regarding both mean and variance is supported by the essays in this dissertation. Linear and nonlinear models are consequently introduced in this dissertation. The advantages of nonlinear models are that they can take into account asymmetries. Asymmetric patterns usually mean that large negative returns appear more often than positive returns of the same magnitude. This goes hand in hand with the fact that negative returns are associated with higher risk than in the case where positive returns of the same magnitude are observed. The reason why these models are of high importance lies in the ability to make the best possible estimations and predictions of future returns and for predicting risk.
Resumo:
Non-Gaussianity of signals/noise often results in significant performance degradation for systems, which are designed using the Gaussian assumption. So non-Gaussian signals/noise require a different modelling and processing approach. In this paper, we discuss a new Bayesian estimation technique for non-Gaussian signals corrupted by colored non Gaussian noise. The method is based on using zero mean finite Gaussian Mixture Models (GMMs) for signal and noise. The estimation is done using an adaptive non-causal nonlinear filtering technique. The method involves deriving an estimator in terms of the GMM parameters, which are in turn estimated using the EM algorithm. The proposed filter is of finite length and offers computational feasibility. The simulations show that the proposed method gives a significant improvement compared to the linear filter for a wide variety of noise conditions, including impulsive noise. We also claim that the estimation of signal using the correlation with past and future samples leads to reduced mean squared error as compared to signal estimation based on past samples only.
Resumo:
This study examined the effects of the Greeks of the options and the trading results of delta hedging strategies, with three different time units or option-pricing models. These time units were calendar time, trading time and continuous time using discrete approximation (CTDA) time. The CTDA time model is a pricing model, that among others accounts for intraday and weekend, patterns in volatility. For the CTDA time model some additional theta measures, which were believed to be usable in trading, were developed. The study appears to verify that there were differences in the Greeks with different time units. It also revealed that these differences influence the delta hedging of options or portfolios. Although it is difficult to say anything about which is the most usable of the different time models, as this much depends on the traders view of the passing of time, different market conditions and different portfolios, the CTDA time model can be viewed as an attractive alternative.
Resumo:
This study evaluates three different time units in option pricing: trading time, calendar time and continuous time using discrete approximations (CTDA). The CTDA-time model partitions the trading day into 30-minute intervals, where each interval is given a weight corresponding to the historical volatility in the respective interval. Furthermore, the non-trading volatility, both overnight and weekend volatility, is included in the first interval of the trading day in the CTDA model. The three models are tested on market prices. The results indicate that the trading-time model gives the best fit to market prices in line with the results of previous studies, but contrary to expectations under non-arbitrage option pricing. Under non-arbitrage pricing, the option premium should reflect the cost of hedging the expected volatility during the option’s remaining life. The study concludes that the historical patterns in volatility are not fully accounted for by the market, rather the market prices options closer to trading time.
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
Polarizabilities and Hyperpolarizabilities of conjugated organic chains are calculated using correlated model Hamiltonians. While correlations reduce the Polarizabilities and extend the range of linear response, the Hyperpolarizabilities essentially are unaffected by the same. This explains the apparently large Hyperpolarizabilities of conjugated electronic systems.
Resumo:
Extraction of formant information from linear-prediction phase spectra is proposed. It is shown that the derivative of phase spectrum gives reliable formant information. Since the phase spectra for several resonators in cascade are additive, the resonance peaks are additive in the derivative of the phase spectrum unlike in the magnitude spectrum and hence the problem of identifying merged peaks is very easily solved by this method. Application of the method is illustrated through examples of linear-prediction spectra obtained for simulated models and for actural speech segments.
Resumo:
The aim of this dissertation is to model economic variables by a mixture autoregressive (MAR) model. The MAR model is a generalization of linear autoregressive (AR) model. The MAR -model consists of K linear autoregressive components. At any given point of time one of these autoregressive components is randomly selected to generate a new observation for the time series. The mixture probability can be constant over time or a direct function of a some observable variable. Many economic time series contain properties which cannot be described by linear and stationary time series models. A nonlinear autoregressive model such as MAR model can a plausible alternative in the case of these time series. In this dissertation the MAR model is used to model stock market bubbles and a relationship between inflation and the interest rate. In the case of the inflation rate we arrived at the MAR model where inflation process is less mean reverting in the case of high inflation than in the case of normal inflation. The interest rate move one-for-one with expected inflation. We use the data from the Livingston survey as a proxy for inflation expectations. We have found that survey inflation expectations are not perfectly rational. According to our results information stickiness play an important role in the expectation formation. We also found that survey participants have a tendency to underestimate inflation. A MAR model has also used to model stock market bubbles and crashes. This model has two regimes: the bubble regime and the error correction regime. In the error correction regime price depends on a fundamental factor, the price-dividend ratio, and in the bubble regime, price is independent of fundamentals. In this model a stock market crash is usually caused by a regime switch from a bubble regime to an error-correction regime. According to our empirical results bubbles are related to a low inflation. Our model also imply that bubbles have influences investment return distribution in both short and long run.
Resumo:
In recent years, thanks to developments in information technology, large-dimensional datasets have been increasingly available. Researchers now have access to thousands of economic series and the information contained in them can be used to create accurate forecasts and to test economic theories. To exploit this large amount of information, researchers and policymakers need an appropriate econometric model.Usual time series models, vector autoregression for example, cannot incorporate more than a few variables. There are two ways to solve this problem: use variable selection procedures or gather the information contained in the series to create an index model. This thesis focuses on one of the most widespread index model, the dynamic factor model (the theory behind this model, based on previous literature, is the core of the first part of this study), and its use in forecasting Finnish macroeconomic indicators (which is the focus of the second part of the thesis). In particular, I forecast economic activity indicators (e.g. GDP) and price indicators (e.g. consumer price index), from 3 large Finnish datasets. The first dataset contains a large series of aggregated data obtained from the Statistics Finland database. The second dataset is composed by economic indicators from Bank of Finland. The last dataset is formed by disaggregated data from Statistic Finland, which I call micro dataset. The forecasts are computed following a two steps procedure: in the first step I estimate a set of common factors from the original dataset. The second step consists in formulating forecasting equations including the factors extracted previously. The predictions are evaluated using relative mean squared forecast error, where the benchmark model is a univariate autoregressive model. The results are dataset-dependent. The forecasts based on factor models are very accurate for the first dataset (the Statistics Finland one), while they are considerably worse for the Bank of Finland dataset. The forecasts derived from the micro dataset are still good, but less accurate than the ones obtained in the first case. This work leads to multiple research developments. The results here obtained can be replicated for longer datasets. The non-aggregated data can be represented in an even more disaggregated form (firm level). Finally, the use of the micro data, one of the major contributions of this thesis, can be useful in the imputation of missing values and the creation of flash estimates of macroeconomic indicator (nowcasting).