955 resultados para Light Emitting Device


Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION Light cure of resin-based adhesives is the mainstay of orthodontic bonding. In recent years, alternatives to conventional halogen lights offering reduced curing time and the potential for lower attachment failure rates have emerged. The relative merits of curing lights in current use, including halogen-based lamps, light-emitting diodes (LEDs), and plasma arc lights, have not been analyzed systematically. In this study, we reviewed randomized controlled trials and controlled clinical trials to assess the risks of attachment failure and bonding time in orthodontic patients in whom brackets were cured with halogen lights, LEDs, or plasma arc systems. METHODS Multiple electronic database searches were undertaken, including MEDLINE, EMBASE, and the Cochrane Oral Health Group's Trials Register, CENTRAL. Language restrictions were not applied. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, Pro-Quest Dissertation Abstracts, and Thesis database. Search terms included randomized controlled trial, controlled clinical trial, random allocation, double blind method, single blind method, orthodontics, LED, halogen, bond, and bracket. Authors of primary studies were contacted as required, and reference lists of the included studies were screened. RESULTS Randomized controlled trials and clinical controlled trials directly comparing conventional halogen lights, LEDs, or plasma arc systems involving patients with full arch, fixed, or bonded orthodontic appliances (not banded) with follow-up periods of a minimum of 6 months were included. Using predefined forms, 2 authors undertook independent extraction of articles; disagreements were resolved by discussion. The assessment of the risk of bias of the randomized controlled trials was based on the Cochrane Risk of Bias tool. Ten studies met the inclusion criteria; 2 were excluded because of high risk of bias. In the comparison of bond failure risk with halogen lights and plasma arc lights, 1851 brackets were included in both groups. Little statistical heterogeneity was observed in this analysis (I(2) = 4.8%; P = 0.379). There was no statistical difference in bond failure risk between the groups (OR, 0.92; 95% CI, 0.68-1.23; prediction intervals, 0.54, 1.56). Similarly, no statistical difference in bond failure risk was observed in the meta-analysis comparing halogen lights and LEDs (OR, 0.96; 95% CI, 0.64-1.44; prediction intervals, 0.07, 13.32). The pooled estimates from both comparisons were OR, 0.93; 95% CI, 0.74-1.17; and prediction intervals, 0.69, 1.17. CONCLUSIONS There is no evidence to support the use of 1 light cure type over another based on risk of attachment failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supramolecular assembly of π-conjugated systems is of large interested due to the possibility to use them in electronic devices.[1] Chrysene is a polyaromatic hydrocarbon which has been studied e.g for organic light-emitting diodes (OLEDs).[2] In continuation of our previous work involving the supramolecular polymerisation of pyrene oligomers [3] an oligomer consisting of three chrysenes linked by phophodiesters was synthesised (Chry3). UV-Vis measurements show that aggregates of Chry3 are formed in aqueous medium. This is illustrated by general hypochromicity, a change in vibronic band intensities and, in particular, the appearance of a red-shifted absorption band in the S0 → S2 transition. The data suggest the formation of J-aggregates. The formation of supramolecular polymers is further studied by temperature-dependent absorption- and fluorescence measurements, and by atomic force microscopy (AFM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to its small band-gap and its high mobility, InN is a promising material for a large number of key applications like band-gap engineering for high efficiency solar cells, light emitting diodes, and high speed devices. Unfortunately, it has been reported that this material exhibits strong surface charge accumulation which may depend on the type of surface. Current investigations are conducted in order to explain the mechanisms which govern such a behavior and to look for ways of avoiding it and/or finding applications that may use such an effect. In this framework, low frequency noise measurements have been performed at different temperatures on patterned MBE grown InN layers. The evolution of the 1/f noise level with temperature in the 77 K-300 K range is consistent with carrier number fluctuations thus indicating surface mechanisms: the surface charge accumulation is confirmed by the noise measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Con el fin de establecer si es posible llevar a cabo el cultivo de microalgas empleando LEDs (Light Emitting Diodes) y si el empleo de los mismos supone alguna ventaja, se llevaron a cabo cinco experiencias con el microalga Chlorella sorokiniana en las que se varió la cantidad y la calidad de la luz aplicada. En las dos primeras experiencias se empleó luz de un solo color, roja en la primera y azul en la segunda, ambas al 50 % de su intensidad. En las tres siguiente se ensayaron mezclas de ambas, aplicando en la tercera 50 % de luz roja y 50 % de luz azul, en la cuarta 70 % de luz roja y 30 % de luz azul y en la quinta 30 % luz roja y 70 % luz azul. En todos los casos se llevó a cabo simultáneamente el cultivo de un testigo en las mismas condiciones pero iluminado con una lámpara fluorescente. Diariamente se tomaron medidas de la densidad óptica, el pH y la conductividad eléctrica. El seguimiento de la temperatura se hizo por medio de sensores que tomaron muestras cada 60 segundos. La experiencia en la que se empleó luz roja y azul al 50 % de intensidad presentó las mayores diferencias con respecto al testigo. En el resto de los casos el ensayo y el testigo presentaron crecimientos similares. Además se evaluaron varias fuentes de luz de uso frecuente en laboratorio con el fin de conocer su espectro de emisión y su comportamiento al atravesar el medio de cultivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durante los últimos años la utilización de los LEDs (Light Emitting Diodes) ha aumentado de forma muy importante siendo hoy en día una alternativa real a los sistemas de iluminación tradicionales. La iluminación basada en LEDs se está utilizando ampliamente en automoción, arquitectura, aplicaciones domésticas y señalización debido a su alta fiabilidad, pequeño tamaño y bajo consumo. La evaluación de la fiabilidad de los LEDs es un tema clave previo a la comercialización o a la puesta en marcha del LED en una nueva aplicación. La evaluación de la fiabilidad de dispositivos requiere ensayos acelerados para obtener resultados de fiabilidad en un periodo de tiempo aceptable, del orden de pocas semanas. En éste proyecto se estudia la fiabilidad de dos tipos diferentes de LEDs ultravioleta, que pueden sustituir a las lámparas UV convencionales, para diferentes condiciones de trabajo y diferentes condiciones ambientales. Se hace un seguimiento de la evolución de los LEDs UV durante cientos horas de ensayo acelerado para obtener resultados y conclusiones acerca de la degradación que sufren. La memoria del proyecto fin de carrera se ha estructurado en siete capítulos. Tres de ellos son teóricos, otros tres prácticos y finalmente uno sobre el presupuesto. El primero explica la introducción y la evolución del diodo LED, el segundo introduce la fiabilidad explicando los modelos más utilizados para analizar los ensayos y el tercero es un breve tema acerca de los ensayos acelerados. Los otros tres capítulos son orientados a los experimentos realizados en este Proyecto Fin de Carrera. Uno trata sobre la descripción del ensayo acelerado realizado, otro analiza los resultados obtenidos, el siguiente analiza las conclusiones y el último el presupuesto. ABSTRACT. For the last years, the use of LEDs (Light Emitting Diodes) has increased significantly, being nowadays a real alternative to traditional lighting systems. Lighting based on LEDs is being extensively used in automotive, domestic applications and signaling due to its high reliability small size and low power consumption. The evaluation of LEDs reliability is a key issue before marketing or launching a new application. The reliability evaluation of devices requires accelerated tests to obtain reliability results in an acceptable period of time, for the order of few weeks. In this project the reliability of two different types of UV LEDs, which can replace conventional UV lamps for different conditions and different environmental conditions is studied. The evolution of LEDs UV is tracked during hundred hours of accelerated test to obtain the results and conclusions about the degradation suffered. The memory of the final project has been structured into seven chapters. Three of them are theorical another three are experimental and the last one about estimates. The first explains the introduction and development of LED, the second introduces the reliability explaining the most used models to analyze the tests and the third is a brief topic about the accelerated tests. The other three chapters are oriented to the experiments done in this PFC. One explains the description of the accelerated test we have done, another analyzes the results obtained, the following one exposes the conclusions and the last one the estimates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scope of the present paper is the derivation of a merit function which predicts the visual perception of LED spot lights. The color uniformity level Usl is described by a linear regression function of the spatial color distribution in the far field. Hereby, the function is derived from four basic functions. They describe the color uniformity of spot lights through different features. The result is a reliable prediction for the perceived color uniformity in spot lights. A human factor experiment was performed to evaluate the visual preferences for colors and patterns. A perceived rank order was derived from the subjects’ answers and compared with the four basic functions. The correlation between the perceived rank order and the basic functions was calculated resulting in the definition of the merit function Usl. The application of this function is shown by a comparison of visual evaluations and measurements of LED retrofit spot lamps. The results enable a prediction of color uniformity levels of simulations and measurements concerning the visual perception. The function provides a possibility to evaluate the far field of spot lights without individual subjective judgment. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La iluminación con diodos emisores de luz (LED) está reemplazando cada vez en mayor medida a las fuentes de luz tradicionales. La iluminación LED ofrece ventajas en eficiencia, consumo de energía, diseño, tamaño y calidad de la luz. Durante más de 50 años, los investigadores han estado trabajando en mejoras LED. Su principal relevancia para la iluminación está aumentando rápidamente. Esta tesis se centra en un campo de aplicación importante, como son los focos. Se utilizan para enfocar la luz en áreas definidas, en objetos sobresalientes en condiciones profesionales. Esta iluminación de alto rendimiento requiere una calidad de luz definida, que incluya temperaturas ajustables de color correlacionadas (CCT), de alto índice de reproducción cromática (CRI), altas eficiencias, y colores vivos y brillantes. En el paquete LED varios chips de diferentes colores (rojo, azul, fósforo convertido) se combinan para cumplir con la distribución de energía espectral con alto CRI. Para colimar la luz en los puntos concretos deseados con un ángulo de emisión determinado, se utilizan blancos sintonizables y diversos colores de luz y ópticas secundarias. La combinación de una fuente LED de varios colores con elementos ópticos puede causar falta de homogeneidad cromática en la distribución espacial y angular de la luz, que debe resolverse en el diseño óptico. Sin embargo, no hay necesidad de uniformidad perfecta en el punto de luz debido al umbral en la percepción visual del ojo humano. Por lo tanto, se requiere una descripción matemática del nivel de uniformidad del color con respecto a la percepción visual. Esta tesis está organizada en siete capítulos. Después de un capítulo inicial que presenta la motivación que ha guiado la investigación de esta tesis, en el capítulo 2 se presentan los fundamentos científicos de la uniformidad del color en luces concentradas, como son: el espacio de color aplicado CIELAB, la percepción visual del color, los fundamentos de diseño de focos respecto a los motores de luz y ópticas no formadoras de imágenes, y los últimos avances en la evaluación de la uniformidad del color en el campo de los focos. El capítulo 3 desarrolla diferentes métodos para la descripción matemática de la distribución espacial del color en un área definida, como son la diferencia de color máxima, la desviación media del color, el gradiente de la distribución espacial de color, así como la suavidad radial y axial. Cada función se refiere a los diferentes factores que influyen en la visión, los cuales necesitan un tratamiento distinto que el de los datos que se tendrán en cuenta, además de funciones de ponderación que pre- y post-procesan los datos simulados o medidos para la reducción del ruido, la luminancia de corte, la aplicación de la ponderación de luminancia, la función de sensibilidad de contraste, y la función de distribución acumulativa. En el capítulo 4, se obtiene la función de mérito Usl para la estimación de la uniformidad del color percibida en focos. Se basó en los resultados de dos conjuntos de experimentos con factor humano realizados para evaluar la percepción visual de los sujetos de los patrones de focos típicos. El primer experimento con factor humano dio lugar al orden de importancia percibida de los focos. El orden de rango percibido se utilizó para correlacionar las descripciones matemáticas de las funciones básicas y la función ponderada sobre la distribución espacial del color, que condujo a la función Usl. El segundo experimento con factor humano probó la percepción de los focos bajo condiciones ambientales diversas, con el objetivo de proporcionar una escala absoluta para Usl, para poder así sustituir la opinión subjetiva personal de los individuos por una función de mérito estandarizada. La validación de la función Usl se presenta en relación con el alcance de la aplicación y condiciones, así como las limitaciones y restricciones que se realizan en el capítulo 5. Se compararon los datos medidos y simulados de varios sistemas ópticos. Se discuten los campos de aplicación , así como validaciones y restricciones de la función. El capítulo 6 presenta el diseño del sistema de focos y su optimización. Una evaluación muestra el análisis de sistemas basados en el reflector y la lente TIR. Los sistemas ópticos simulados se comparan en la uniformidad del color Usl, sensibilidad a las sombras coloreadas, eficiencia e intensidad luminosa máxima. Se ha comprobado que no hay un sistema único que obtenga los mejores resultados en todas las categorías, y que una excelente uniformidad de color se pudo alcanzar por la conjunción de dos sistemas diferentes. Finalmente, el capítulo 7 presenta el resumen de esta tesis y la perspectiva para investigar otros aspectos. ABSTRACT Illumination with light-emitting diodes (LED) is more and more replacing traditional light sources. They provide advantages in efficiency, energy consumption, design, size and light quality. For more than 50 years, researchers have been working on LED improvements. Their main relevance for illumination is rapidly increasing. This thesis is focused on one important field of application which are spotlights. They are used to focus light on defined areas, outstanding objects in professional conditions. This high performance illumination required a defined light quality including tunable correlated color temperatures (CCT), high color rendering index (CRI), high efficiencies and bright, vivid colors. Several differently colored chips (red, blue, phosphor converted) in the LED package are combined to meet spectral power distribution with high CRI, tunable white and several light colors and secondary optics are used to collimate the light into the desired narrow spots with defined angle of emission. The combination of multi-color LED source and optical elements may cause chromatic inhomogeneities in spatial and angular light distribution which needs to solved at the optical design. However, there is no need for perfect uniformity in the spot light due to threshold in visual perception of human eye. Therefore, a mathematical description of color uniformity level with regard to visual perception is required. This thesis is organized seven seven chapters. After an initial one presenting the motivation that has guided the research of this thesis, Chapter 2 introduces the scientific basics of color uniformity in spot lights including: the applied color space CIELAB, the visual color perception, the spotlight design fundamentals with regards to light engines and nonimaging optics, and the state of the art for the evaluation of color uniformity in the far field of spotlights. Chapter 3 develops different methods for mathematical description of spatial color distribution in a defined area, which are the maximum color difference, the average color deviation, the gradient of spatial color distribution as well as the radial and axial smoothness. Each function refers to different visual influencing factors, and they need different handling of data be taken into account, along with weighting functions which pre- and post-process the simulated or measured data for noise reduction, luminance cutoff, the implementation of luminance weighting, contrast sensitivity function, and cumulative distribution function. In chapter 4, the merit function Usl for the estimation of the perceived color uniformity in spotlights is derived. It was based on the results of two sets of human factor experiments performed to evaluate the visual perception of typical spotlight patterns by subjects. The first human factor experiment resulted in the perceived rank order of the spotlights. The perceived rank order was used to correlate the mathematical descriptions of basic functions and weighted function concerning the spatial color distribution, which lead to the Usl function. The second human factor experiment tested the perception of spotlights under varied environmental conditions, with to objective to provide an absolute scale for Usl, so the subjective personal opinion of individuals could be replaced by a standardized merit function. The validation of the Usl function is presented concerning the application range and conditions as well as limitations and restrictions in carried out in chapter 5. Measured and simulated data of various optical several systems were compared. Fields of applications are discussed as well as validations and restrictions of the function. Chapter 6 presents spotlight system design and their optimization. An evaluation shows the analysis of reflector-based and TIR lens systems. The simulated optical systems are compared in color uniformity Usl , sensitivity to colored shadows, efficiency, and peak luminous intensity. It has been found that no single system which performed best in all categories, and that excellent color uniformity could be reached by two different system assemblies. Finally, chapter 7 summarizes the conclusions of the present thesis and an outlook for further investigation topics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like I–V characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a unique case of a gene containing three homologous and contiguous repeat sequences, each of which, after excision, cloning, and expression in Escherichia coli, is shown to code for a peptide catalyzing the same reaction as the native protein, Gonyaulax polyedra luciferase (Mr = 137). This enzyme, which catalyzes the light-emitting oxidation of a linear tetrapyrrole (dinoflagellate luciferin), exhibits no sequence similarities to other luciferases in databases. Sequence analysis also reveals an unusual evolutionary feature of this gene: synonymous substitutions are strongly constrained in the central regions of each of the repeated coding sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.