946 resultados para Lexington, Battle of, Lexington, Mass., 1775
Resumo:
This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.
The geochemical data, and particularly the immobile elements distribution and REE patterns, show that the Balkouin laterite is the product of an in situ lateritization process that involved a strong depletion of the more soluble elements (K, Mg, Ca, Na, Rb, Sr and Ba) and an enrichment in Fe; Si was also removed, particularly in the uppermost horizons. All along the profile the change in composition is coupled with important changes in mineralogy. In particular, the saprolite is characterized by occurrence of abundant albitic plagioclase, quartz and nontronite; kaolinite is apparently absent. The transition to the overlying lateritic profile marks the breakdown of plagioclase and nontronite, thus allowing kaolinite to become one of the major components upwards, together with goethite and quartz. The upper part of the profile is strongly enriched in hematite (+ kaolinite). Ti oxides (at least in part as anatase) and apatite are typical accessory phases, while free aluminum hydroxides are notably absent. Mass change calculations emphasize the extent of the mass loss, which exceeds 50 wt% (and often 70 wt%) for almost all horizons; only Fe was significantly concentrated in the residual system.
The geochemical and mineralogical features suggest that the lateritic profile is the product of a continuous process that gradually developed from the bedrock upwards, in agreement with the Schellmann classic genetic model. The laterite formation must have occurred at low pH (? 4.5) and high Eh (? 0.4) values, i.e., under acidic and oxidizing environments, which allowed strongly selective leaching conditions. The lack of gibbsite and bohemite is in agreement with the compositional data: the occurrence of quartz (± amorphous silica) all along the profile was an inhibiting factor for the formation of free aluminum hydroxides.
Resumo:
Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.
Resumo:
The Bi-directional Evolutionary Structural Optimisation (BESO) method is a numerical topology optimisation method developed for use in finite element analysis. This paper presents a particular application of the BESO method to optimise the energy absorbing capability of metallic structures. The optimisation objective is to evolve a structural geometry of minimum mass while ensuring that the kinetic energy of an impacting projectile is reduced to a level which prevents perforation. Individual elements in a finite element mesh are deleted when a prescribed damage criterion is exceeded. An energy absorbing structure subjected to projectile impact will fail once the level of damage results in a critical perforation size. It is therefore necessary to constrain an optimisation algorithm from producing such candidate solutions. An algorithm to detect perforation was implemented within a BESO framework which incorporated a ductile material damage model.
Resumo:
Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods
Resumo:
Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.
Resumo:
Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.
Resumo:
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
Resumo:
Esophageal (EA) and esophagogastric junction (EGJA) adenocarcinoma have been steadily increasing in frequency in younger people, however the etiology of these cancers is poorly understood. We therefore investigated associations of body- mass index (BMI), cigarette smoking, alcohol consumption, gastroesophageal reflux, and use of non-steroidal anti-inflammatory drugs (NSAIDs) in relation to age-specific risks of EA and EGJA. We pooled individual participant data from eight population-based, case-control studies within the international Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON). The analysis included 1,363 EA patients, 1,472 EGJA patients, and 5,728 control participants. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for age-specific (<50, 50–59, 60–69, ≥70 years) cancer outcomes, as well as interactions by age. BMI, smoking status and pack-years, recurrent gastroesophageal reflux, and frequency of gastroesophageal reflux were positively associated with EA and EGJA in each age group. Early-onset EA (<50 years) had stronger associations with recurrent gastroesophageal reflux (OR=8.06, 95%CI: 4.52, 14.37; Peffect modification=0.01) and BMI (ORBMI ≥30 vs. <25=4.19, 95%CI: 2.23, 7.87; Peffect modification=0.04), relative to older age groups. In contrast, inverse associations of NSAID use were strongest in the oldest age group (≥70 years), although this apparent difference was not statistically significant. Age-specific associations with EGJA showed similar, but slightly weaker patterns and no statistically significant differences by age were observed. Our study provides evidence that associations between obesity and gastroesophageal reflux are stronger among earlier onset EA cancers.
Resumo:
We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of lowluminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km s-1 is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small (≤10-2 M⊙). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M⊙.
Resumo:
We present nebular-phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with non-local thermodynamic equilibrium radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 M⊙progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14-18 M⊙ range.We also demonstrate how the evolution of the oxygen cooling lines of [O I] λ5577, [O I] λ6300, and [O I] λ6364 can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 M⊙, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 M⊙ would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 M⊙ can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate.We conclude that there is still no convincing example of a Type IIP supernova showing the nucleosynthesis products expected from an MZAMS > 20 M⊙ progenitor. © 2014 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.
In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.
Resumo:
In the United Kingdom (UK) the centenary commemoration of the First World War has been driven by a combination of central government direction (and funding) with a multitude of local and community initiatives, with a particular focus on 4 August 2014; 1 July 2016 (the beginning of the Battle of the Somme) and 11 November 2018. ‘National’ ceremonies on these dates have been and will be supplemented with projects commemorating micro-stories and government-funded opportunities for schoolchildren to visit Great War battlefields, the latter clearly aimed to reinforce a contemporary sense of civic and national obligation and service. This article explores the problematic nature of this approach, together with the issues raised by the multi-national nature of the UK state itself.
Resumo:
The year 1916 witnessed two events that would profoundly shape both
politics and commemoration in Ireland over the course of the following
century. Although the Easter Rising and the Battle of the Somme were
important historical events in their own right, their significance also lay
in how they came to be understood as iconic moments in the emergence
of Northern Ireland and the Irish Republic. Adopting an interdisciplinary
approach drawing on history, politics, anthropology and cultural
studies, this volume explores how the memory of these two foundational
events has been constructed, mythologised and revised over the course
of the past century. The aim is not merely to understand how the Rising
and Somme came to exert a central place in how the past is viewed in
Ireland, but to explore wider questions about the relationship between
history, commemoration and memory.
Resumo:
During extreme sea states so called impact events can be observed on the wave energy converter Oyster. In small scale experimental tests these impact events cause high frequency signals in the measured load which decrease confidence in the data obtained. These loads depend on the structural dynamics of the model. Amplification of the loads can occur and is transferred through the structure from the point of impact to the load cell located in the foundation. Since the determination of design data and load cases for Wave Energy Converters originate from scale experiments, this lack of confidence has a direct effect on the development.
Numerical vibration analysis is a valuable tool in the research of the structural load response of Oyster to impact events, but must take into account the effect of the surrounding water. This can be done efficiently by adding an added mass distribution, computed with a linearised potential boundary element method. This paper presents the development and validation of a numerical procedure, which couples the OpenSource boundary element code NEMOH with the Finite Element Analysis tool CodeAster. Numerical results of the natural frequencies and mode shapes of the structure under the influence of added mass due to specific structural modes are compared with experimental results.
Resumo:
We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.