992 resultados para Learning disorders
Resumo:
In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
Resumo:
BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Resumo:
BACKGROUND AND PURPOSE: Recent evidence suggests that there may be more than one Gilles de la Tourette syndrome (GTS)/tic disorder phenotype. However, little is known about the common patterns of these GTS/tic disorder-related comorbidities. In addition, sex-specific phenomenological data of GTS/tic disorder-affected adults are rare. Therefore, this community-based study used latent class analyses (LCA) to investigate sex-related and non-sex-related subtypes of GTS/tic disorders and their most common comorbidities. METHODS: The data were drawn from the PsyCoLaus study (n = 3691), a population-based survey conducted in Lausanne, Switzerland. LCA were performed on the data of 80 subjects manifesting motor/vocal tics during their childhood/adolescence. Comorbid attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, depressive, phobia and panic symptoms/syndromes comprised the selected indicators. The resultant classes were characterized by psychosocial correlates. RESULTS: In LCA, four latent classes provided the best fit to the data. We identified two male-related classes. The first class exhibited both ADHD and depression. The second class comprised males with only depression. Class three was a female-related class depicting obsessive thoughts/compulsive acts, phobias and panic attacks. This class manifested high psychosocial impairment. Class four had a balanced sex proportion and comorbid symptoms/syndromes such as phobias and panic attacks. The complementary occurrence of comorbid obsessive thoughts/compulsive acts and ADHD impulsivity was remarkable. CONCLUSIONS: To the best of our knowledge, this is the first study applying LCA to community data of GTS symptoms/tic disorder-affected persons. Our findings support the utility of differentiating GTS/tic disorder subphenotypes on the basis of comorbid syndromes.
Resumo:
The occurrence of electrolyte disorders as hypocalcemia and/or hyponatremia is an uncommon event in preeclampsia, which can be the sign of serious situation, with potentially unfavourable consequences for the mother and her foetus. Hyponatremia in the setting of preeclampsia is an indicator of severity, and requires the understanding of the etiologic mechanisms to initiate an appropriate treatment. Indeed the often-considered fluid restriction is rarely a treatment option for pregnant women. Hypocalcemia is a complication that must be monitored when a treatment with high doses of intravenous magnesium sulphate is introduced. In this context, hypocalcemia must be sought, with the exclusion of other etiologies as vitamin D deficiency, hypoparathyroidism or renal and extrarenal loss of calcium. A replacement therapy, intravenous or oral according to circumstances, should be considered in case of severe or symptomatic hypocalcemia.
Resumo:
The major mood disorders, which include bipolar disorder and major depressive disorder (MDD), are considered heritable traits, although previous genetic association studies have had limited success in robustly identifying risk loci. We performed a meta-analysis of five case-control cohorts for major mood disorder, including over 13,600 individuals genotyped on high-density SNP arrays. We identified SNPs at 3p21.1 associated with major mood disorders (rs2251219, P = 3.63 x 10(-8); odds ratio = 0.87; 95% confidence interval, 0.83-0.92), with supportive evidence for association observed in two out of three independent replication cohorts. These results provide an example of a shared genetic susceptibility locus for bipolar disorder and MDD.
Resumo:
In fear conditioning, an animal learns to associate an unconditioned stimulus (US), such as a shock, and a conditioned stimulus (CS), such as a tone, so that the presentation of the CS alone can trigger conditioned responses. Recent research on the lateral amygdala has shown that following cued fear conditioning, only a subset of higher-excitable neurons are recruited in the memory trace. Their selective deletion after fear conditioning results in a selective erasure of the fearful memory. I hypothesize that the recruitment of highly excitable neurons depends on responsiveness to stimuli, intrinsic excitability and local connectivity. In addition, I hypothesize that neurons recruited for an initial memory also participate in subsequent memories, and that changes in neuronal excitability affect secondary fear learning. To address these hypotheses, I will show that A) a rat can learn to associate two successive short-term fearful memories; B) neuronal populations in the LA are competitively recruited in the memory traces depending on individual neuronal advantages, as well as advantages granted by the local network. By performing two successive cued fear conditioning experiments, I found that rats were able to learn and extinguish the two successive short-term memories, when tested 1 hour after learning for each memory. These rats were equipped with a system of stable extracellular recordings that I developed, which allowed to monitor neuronal activity during fear learning. 233 individual putative pyramidal neurons could modulate their firing rate in response to the conditioned tone (conditioned neurons) and/or non- conditioned tones (generalizing neurons). Out of these recorded putative pyramidal neurons 86 (37%) neurons were conditioned to one or both tones. More precisely, one population of neurons encoded for a shared memory while another group of neurons likely encoded the memories' new features. Notably, in spite of a successful behavioral extinction, the firing rate of those conditioned neurons in response to the conditioned tone remained unchanged throughout memory testing. Furthermore, by analyzing the pre-conditioning characteristics of the conditioned neurons, I determined that it was possible to predict neuronal recruitment based on three factors: 1) initial sensitivity to auditory inputs, with tone-sensitive neurons being more easily recruited than tone- insensitive neurons; 2) baseline excitability levels, with more highly excitable neurons being more likely to become conditioned; and 3) the number of afferent connections received from local neurons, with neurons destined to become conditioned receiving more connections than non-conditioned neurons. - En conditionnement de la peur, un animal apprend à associer un stimulus inconditionnel (SI), tel un choc électrique, et un stimulus conditionné (SC), comme un son, de sorte que la présentation du SC seul suffit pour déclencher des réflexes conditionnés. Des recherches récentes sur l'amygdale latérale (AL) ont montré que, suite au conditionnement à la peur, seul un sous-ensemble de neurones plus excitables sont recrutés pour constituer la trace mnésique. Pour apprendre à associer deux sons au même SI, je fais l'hypothèse que les neurones entrent en compétition afin d'être sélectionnés lors du recrutement pour coder la trace mnésique. Ce recrutement dépendrait d'un part à une activation facilité des neurones ainsi qu'une activation facilité de réseaux de neurones locaux. En outre, je fais l'hypothèse que l'activation de ces réseaux de l'AL, en soi, est suffisante pour induire une mémoire effrayante. Pour répondre à ces hypothèses, je vais montrer que A) selon un processus de mémoire à court terme, un rat peut apprendre à associer deux mémoires effrayantes apprises successivement; B) des populations neuronales dans l'AL sont compétitivement recrutées dans les traces mnésiques en fonction des avantages neuronaux individuels, ainsi que les avantages consentis par le réseau local. En effectuant deux expériences successives de conditionnement à la peur, des rats étaient capables d'apprendre, ainsi que de subir un processus d'extinction, pour les deux souvenirs effrayants. La mesure de l'efficacité du conditionnement à la peur a été effectuée 1 heure après l'apprentissage pour chaque souvenir. Ces rats ont été équipés d'un système d'enregistrements extracellulaires stables que j'ai développé, ce qui a permis de suivre l'activité neuronale pendant l'apprentissage de la peur. 233 neurones pyramidaux individuels pouvaient moduler leur taux d'activité en réponse au son conditionné (neurones conditionnés) et/ou au son non conditionné (neurones généralisant). Sur les 233 neurones pyramidaux putatifs enregistrés 86 (37%) d'entre eux ont été conditionnés à un ou deux tons. Plus précisément, une population de neurones code conjointement pour un souvenir partagé, alors qu'un groupe de neurones différent code pour de nouvelles caractéristiques de nouveaux souvenirs. En particulier, en dépit d'une extinction du comportement réussie, le taux de décharge de ces neurones conditionné en réponse à la tonalité conditionnée est resté inchangée tout au long de la mesure d'apprentissage. En outre, en analysant les caractéristiques de pré-conditionnement des neurones conditionnés, j'ai déterminé qu'il était possible de prévoir le recrutement neuronal basé sur trois facteurs : 1) la sensibilité initiale aux entrées auditives, avec les neurones sensibles aux sons étant plus facilement recrutés que les neurones ne répondant pas aux stimuli auditifs; 2) les niveaux d'excitabilité des neurones, avec les neurones plus facilement excitables étant plus susceptibles d'être conditionnés au son ; et 3) le nombre de connexions reçues, puisque les neurones conditionné reçoivent plus de connexions que les neurones non-conditionnés. Enfin, nous avons constaté qu'il était possible de remplacer de façon satisfaisante le SI lors d'un conditionnement à la peur par des injections bilatérales de bicuculline, un antagoniste des récepteurs de l'acide y-Aminobutirique.
Resumo:
The National Council for the Elderly is an advisory body to the Minister for Health on all aspects of ageing and the welfare of the elderly. One of its terms of reference is to advise the Minister on measures to promote the health of the elderly. As one of its contributions towards the realisation of this objective the Council published a report in October 1996 entitled, Mental Disorders in Older Irish People: Incidence Prevalence and Treatment. The report provides a profile of mental disorders in the older Irish population by bringing together in one publication the information which exists on the prevalence, incidence and treatment of mental disorders in older people. It will be a valuable source of information for planning and developing mental health services for older people. Download the Report here Â
Resumo:
An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method
Resumo:
Some authors argue that both substance dependence and eating disorders should be considered as dependent behaviours. Similarities and differences between these disorders, however, remain unclear. This study compares processes of emotion regulation in adolescents and young adults (15 to 25 years old) with substance dependence (SD) or eating disorders (ED). One hundred and thirteen SD, 50 ED and 86 non-clinical subjects (NC), recruited in four French and Swiss locations, completed a self-report questionnaire of emotion regulation strategies. This questionnaire addresses the subjects' relationships, concerning past and present family, and refers to Main's (1990) concept of primary strategy (balanced activation and deactivation of attachment behaviours), and of secondary strategies (hyperactivation or excessive deactivation of the attachment system). Participants were also questioned in structured interviews, about life events and DSM-IV classification criteria. SD reported more adverse events than ED and NC. SD and ED reported using fewer primary strategies than NC, and SD had secondary strategies that were different from those of ED. Patients with eating disorders reported more hyperactivation, and SD reported more deactivation of the attachment system. It is hypothesized that while subjects with SD and ED have in common poorly regulated strategies, they differ in the way they process emotion or relationship-related information.
Resumo:
In response to our suggestion to define substance use disorders via 'heavy use over time', theoretical and conceptual issues, measurement problems and implications for stigma and clinical practice were raised. With respect to theoretical and conceptual issues, no other criterion has been shown, which would improve the definition. Moreover, heavy use over time is shown to be highly correlated with number of criteria in current DSM-5. Measurement of heavy use over time is simple and while there will be some underestimation or misrepresentation of actual levels in clinical practice, this is not different from the status quo and measurement of current criteria. As regards to stigma, research has shown that a truly dimensional concept can help reduce stigma. In conclusion, 'heavy use over time' as a tangible common denominator should be seriously considered as definition for substance use disorder.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.