958 resultados para Lattice Points
Resumo:
BACKGROUND: Although most clinical trials of coronary stents have measured nominally identical safety and effectiveness end points, differences in definitions and timing of assessment have created confusion in interpretation. METHODS AND RESULTS: The Academic Research Consortium is an informal collaboration between academic research organizations in the United States and Europe. Two meetings, in Washington, DC, in January 2006 and in Dublin, Ireland, in June 2006, sponsored by the Academic Research Consortium and including representatives of the US Food and Drug Administration and all device manufacturers who were working with the Food and Drug Administration on drug-eluting stent clinical trial programs, were focused on consensus end point definitions for drug-eluting stent evaluations. The effort was pursued with the objective to establish consistency among end point definitions and provide consensus recommendations. On the basis of considerations from historical legacy to key pathophysiological mechanisms and relevance to clinical interpretability, criteria for assessment of death, myocardial infarction, repeat revascularization, and stent thrombosis were developed. The broadly based consensus end point definitions in this document may be usefully applied or recognized for regulatory and clinical trial purposes. CONCLUSION: Although consensus criteria will inevitably include certain arbitrary features, consensus criteria for clinical end points provide consistency across studies that can facilitate the evaluation of safety and effectiveness of these devices.
Resumo:
OBJECTIVE: The aim of this study was to determine the presence and absence of acupuncture ear points in healthy neonates. DESIGN: This was a prospective observational study performed at a university teaching hospital. Subjects: The subjects were healthy neonates. We compared male and female neonates, right and left lobe, term and preterm deliveries, and cesarean sections versus vaginal deliveries. Examinations took place on the fifth day after delivery and were performed by a neuronal pen (SVESA 1070, SVESA GmbH, Munich, Germany). An integrated optical signal detected the ear points that were assigned to the Chinese ear map. MAIN OUTCOME MEASURES: This study looked at the presence and absence of acupuncture ear points in neonates. RESULTS: There were 27 male neonates and 23 female neonates. In 66% of neonates, no points at all were found. We detected 0-4 points on the right lobe and 0-2 points on the left lobe. The psychovegetative rim was the most common point in 26% of all children. No psychic points were detected. No significant differences were found between right and left ear lobes, male and female neonates, or term and preterm deliveries with respect to numbers of points or access of points. Moreover, there were no differences among modes of delivery. CONCLUSIONS: Some ear points in healthy neonates are detectable and not dependent on side of the ear lobe. Females had significantly more acupuncture points. There was an extremely significant difference in the group with 2 active earpoints between cesarean and vaginally delivered neonates. The most important point was the psychovegetative rim and the absence of psychic points in favor of the organ points. Possibly, ear points in neonates could be used for diagnostic and therapeutic options in neonates in the future.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.