990 resultados para Large disturbance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical method to analyze three-layer large flattened mode (LFM) fibers is presented. The modal fields, including the fundamental and higher order modes, and bending loss of the fiber are analyzed. The reason forming the different modal fields is explained and the feasibility to filter out the higher order modes via bending to realize high power, high beam quality fiber laser is given. Comparisons are made with the standard step-index fiber. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a refractive index pro. le design enabling us to obtain a. at modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index pro. le with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order modes than the standard step-index fibre with the same bending radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical method to analyze four-layer large flattened mode (LFM) fibers is presented. The influence of the second cladding on the properties of four-layer LFM fiber, including the fundamental and higher-order modal fields, effective area, bending loss, and dispersion, are studied by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.6 times larger than that of the conventional standard step-index fiber and the fibers have better bend-induced filtering ability than three-layer LFM fibers. (C) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical method to analyze a kind of four-layer large flattened mode (LFM) fibers is presented. The properties of the fiber, including the fundamental and higher-order modal fields, effective area and bending loss are discussed by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.3 times larger than that of the conventional standard step-index fiber and the fiber can suppress the higher-order modes via bending effectively. The four-layer LFM fiber has less efficient bend-induced filtering ability than the conventional step-index fiber; however, it has more efficient filtering ability than the three-layer LFM fiber. (C) 2007 Elsevier GmbH. All rights reserved.