992 resultados para Lanthanum and samarium,
Resumo:
Using as a starting point the results giving 'traditional' growth rates as determined by the decrease of radioelements (part I) and the hypothesis of rapid formation, the different mineralogical, structure and chemical characteristics of the sample have been studied to try to understand the possible mode of formation of this encrustation. A rapid formation would account for (1) the very peculiar structure of the sample composed of oriented botryoids and the bundle-like structure of the outermost oxide layer; (2) the fact that this sample represents a substitution of a preexisting hyaloclastite; (3) the different chemical gradients, mainly iron, thorium and uranium; (4) the fact that this sample which cannot have been maintained at the sediment-water interface by bioturbation is not covered by a great thickness of sediments. On the other hand, an unsolved problem remains: Why different radionuclides used for dating give growth rates of the same order of magnitude and different 'exposition ages'.
Resumo:
Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.
Resumo:
The gabbronoritic cumulates drilled at DSDP Site 334 (Mid-Atlantic Ridge off the FAMOUS area) are neither crystallization products of the associated basalts, nor from any MORB composition documented along ocean ridges. Their parent melts are richer in SiO2 than MORB at a given MgO content, as attested by the crystallization sequence starting with an olivine+calcic and sub-calcic pyroxene assemblages. These melts are issued from a source highly depleted in incompatible elements, likely residual peridotite left after MORB extraction. To understand the role of water in the genesis of these lithologies whose occurrence in a mid-ocean ridge setting is rather puzzling, we performed a geochemical study on clinopyroxene separates following an analytical protocol able to remove the effects of water rock interactions post-dating their crystallization. Accordingly, the measured isotopic signatures can be used to trace magma sources. We find that Site 334 clinopyroxenes depart from the global mantle correlation: normal MORB values for the 143Nd/ 144Nd ratio (0.51307-0.51315) are associated to highly radiogenic 87Sr / 86Sr (0.7034-0.7067) ratios. This indicates that the parent melts of Site 334 cumulates are issued from a MORB source but that seawater contamination occurred at some stage of their genesis. The extent of contamination, traced by the Sr isotopic signature, is variable within all cumulates but more developed for gabbronorites sensus stricto, suggesting that seawater introduction was a continuous process during all the magmatic evolution of the system, from partial melting to fractional crystallization. Simple masse balance calculations are consistent with a contaminating agent having the characters of a highly hydrated (possibly water saturated) silica-rich melt depleted in almost all incompatible major, minor and trace elements relative to MORB. Mixing in various proportions of contaminated melts similar to the parent melts of Site 334 cumulates with MORB can account for part of the variability in the Sr isotopic signature of oceanic basalts, among other to the short wavelength isotopic "noise" superimposed on regional trends. We conclude that seawater introduction into residual peridotite at shallow depth beneath mid-ocean ridges can lead mantle rocks and their melts to follow complex P-T-fH2O paths that mimic petrogenetic contexts classically attributed to subduction zone environments, like the production of boninitic-andesitic magmas.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.