999 resultados para Langmuir layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The important influence of shock waves on supersonic inlet performance has led to much time and effort being expended in the area of shock wave/boundary layer interaction research (SWBLI) and SWBLI control. In this short review, the impact of SWBLIs on supersonic inlet aerodynamic research is discussed and is contrasted with fundamental SWBLI research. Inlet research focussed on internal flow performance is reviewed, based on the salient results, conclusions, and the limitations of such work. The role of fundamental SWBLI research in relation to supersonic inlet research is considered, and the possible positive impact of improving the link between fundamental SWBLI research and inlet design is considered. A simple flow-field is discussed which is thought to be able to simulate at least some more of the flow physics found in a typical inlet. A brief review of real inlet parameters is then given to help determine appropriate fundamental experimental parameters such as incoming Mach number, incoming boundary-layer thickness and subsonic difiuser angle. Copyright © 2012 by N. Titchener, H. Babinsky, and E. Loth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We detect electroluminescence in single layer molybdenum disulphide (MoS2) field-effect transistors built on transparent glass substrates. By comparing absorption, photoluminescence, and electroluminescence of the same MoS2 layer, we find that they all involve the same excited state at 1.8eV. The electroluminescence has pronounced threshold behavior and is localized at the contacts. The results show that single layer MoS2, a direct band gap semiconductor, is promising for novel optoelectronic devices, such as 2-dimensional light detectors and emitters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study by Raman scattering the shear and layer breathing modes in multilayer MoS2. These are identified by polarization measurements and symmetry analysis. Their positions change significantly with the number of layers, with different scaling for odd and even layers. A chain model can explain the results, with general applicability to any layered material, allowing a reliable diagnostic of their thickness. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times. © Owned by the authors, published by EDP Sciences, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.