983 resultados para Land subsidence
Resumo:
The assessment of the potential landscape impacts of the latest Common Agricultural Policy reforms constitutes a challenge for policy makers and it requires the development of models that can reliably project the likely spatial distribution of land uses. The aim of this study is to investigate the impact of 2003 CAP reforms to land uses and rural landscapes across England. For this purpose we modified an existing economic model of agriculture, the Land-Use Allocation Model (LUAM) to provide outputs at a scale appropriate for informing a semi-quantitative landscape assessment at the level of ‘Joint Character Areas’ (JCAs). Overall a decline in the cereal and oilseed production area is projected but intensive arable production will persist in specific locations (East of England, East Midlands and South East), having ongoing negative effects on the character of many JCAs. The impacts of de-coupling will be far more profound on the livestock sector; extensification of production will occur in traditional mixed farming regions (e.g. the South West), a partial displacement of cattle by sheep in the upland regions and an increase in the sheep numbers is expected in the lowlands (South East, Eastern and East Midlands). This extensification process will affect positively those JCAs of mixed farming conditions, but it will have negative impacts on the JCAs of historically low intensity farming (e.g. the uplands of north-west) because they will suffer from under-management and land idling. Our analysis shows that the territorialisation between intensively and extensively agricultural landscapes will continue.
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.
Resumo:
[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
Resumo:
Vegetation distribution and state have been measured since 1981 by the AVHRR (Advanced Very High Resolution Radiometer) instrument through satellite remote sensing. In this study a correction method is applied to the Pathfinder NDVI (Normalized Difference Vegetation Index) data to create a continuous European vegetation phenology dataset of a 10-day temporal and 0.1° spatial resolution; additionally, land surface parameters for use in biosphere–atmosphere modelling are derived. The analysis of time-series from this dataset reveals, for the years 1982–2001, strong seasonal and interannual variability in European land surface vegetation state. Phenological metrics indicate a late and short growing season for the years 1985–1987, in addition to early and prolonged activity in the years 1989, 1990, 1994 and 1995. These variations are in close agreement with findings from phenological measurements at the surface; spring phenology is also shown to correlate particularly well with anomalies in winter temperature and winter North Atlantic Oscillation (NAO) index. Nevertheless, phenological metrics, which display considerable regional differences, could only be determined for vegetation with a seasonal behaviour. Trends in the phenological phases reveal a general shift to earlier (−0.54 days year−1) and prolonged (0.96 days year−1) growing periods which are statistically significant, especially for central Europe.
Resumo:
The findings of the Barker review, which examined the reasons for the undersupply of UK housing, have important implications for the devolved constituents of the UK, including Scotland. This paper traces the emergence of the brownfi eld regeneration policy agenda across the UK and examines how the Barker review connects with this brownfi eld policy focus. The paper compares housing and brownfi eld policies and practices in England and Scotland, places them in an international context and elicits wider lessons for devolved governance in relation to housing policy, in terms of ‘centrist–local’ tensions. Estimates based on published data suggest that Barker’s emphasis on increased housing supply cannot easily be reconciled with the current emphasis on brownfi eld development and is likely to require a return to greenfield development in both countries.
Resumo:
The first part of this review examines what is meant by ‘urban land and property’ (ULP) and looks at the background of ULP in the light of trends in UK urban areas over the past 50 years. Key conceptual approaches to the ULP ‘ownership issue’ are identified, together with the constraints to empirical analysis, which include a lack of data and patchy and inconsistent datasets. Three main components of ULP ownership in the UK are then examined using published data on commercial property, residential property and urban land, including ‘previously developed land’ (PDL) and ‘development land, covering both the private and public sectors. The review examines past trends in ULP ownership patterns in these sectors within the UK, and the key drivers which have created the present day patterns of ULP ownership. It concludes by identifying possible future trends in ULP ownership over the next 50 years to 2060 in the three main ULP sectors.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.
Landscape, regional and global estimates of nitrogen flux from land to sea: errors and uncertainties
Resumo:
Regional to global scale modelling of N flux from land to ocean has progressed to date through the development of simple empirical models representing bulk N flux rates from large watersheds, regions, or continents on the basis of a limited selection of model parameters. Watershed scale N flux modelling has developed a range of physically-based approaches ranging from models where N flux rates are predicted through a physical representation of the processes involved, through to catchment scale models which provide a simplified representation of true systems behaviour. Generally, these watershed scale models describe within their structure the dominant process controls on N flux at the catchment or watershed scale, and take into account variations in the extent to which these processes control N flux rates as a function of landscape sensitivity to N cycling and export. This paper addresses the nature of the errors and uncertainties inherent in existing regional to global scale models, and the nature of error propagation associated with upscaling from small catchment to regional scale through a suite of spatial aggregation and conceptual lumping experiments conducted on a validated watershed scale model, the export coefficient model. Results from the analysis support the findings of other researchers developing macroscale models in allied research fields. Conclusions from the study confirm that reliable and accurate regional scale N flux modelling needs to take account of the heterogeneity of landscapes and the impact that this has on N cycling processes within homogenous landscape units.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
This article provides time series data on the medieval market in freehold land, including the changing social composition of freeholders, level of market activity, size and complexity of landholdings, and shifts in the market value of land. These are subjects hitherto largely ignored due, in part, to the disparate nature of the evidence. It argues that feet of fines, despite archival limitations, if employed with care and an understanding of the underlying changes in the common law of real property, are capable of providing quantifiable evidence spanning hundreds of years and comparable across large areas of England.