949 resultados para LINKING BIOLOGY
Resumo:
Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 angstrom resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)(2) molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.
Resumo:
Nutrition science finds itself at a major crossroad. On the one hand we can continue the current path, which has resulted in some substantial advances, but also many conflicting messages which impair the trust of the general population, especially those who are motivated to improve their health through diet. The other road is uncharted and is being built over the many exciting new developments in life sciences. This new era of nutrition recognizes the complex relation between the health of the individual, its genome, and the life-long dietary exposure, and has lead to the realisation that nutrition is essentially a gene - environment interaction science. This review on the relation between genotype, diet and health is the first of a series dealing with the major challenges in molecular nutrition, analyzing the foundations of nutrition research. With the unravelling of the human genome and the linking of its variability to a multitude of phenotypes from " healthy'' to an enormously complex range of predispositions, the dietary modulation of these propensities has become an area of active research. Classical genetic approaches applied so far in medical genetics have steered away from incorporating dietary effects in their models and paradoxically, most genetic studies analyzing diet-associated phenotypes and diseases simply ignore diet. Yet, a modest but increasing number of studies are accounting for diet as a modulator of genetic associations. These range from observational cohorts to intervention studies with prospectively selected genotypes. New statistical and bioinformatics approaches are becoming available to aid in design and evaluation of these studies. This review discusses the various approaches used and provides concrete recommendations for future research.
Resumo:
Covariation in the structural composition of the gut microbiome and the spectroscopically derived metabolic phenotype (metabotype) of a rodent model for obesity were investigated using a range of multivariate statistical tools. Urine and plasma samples from three strains of 10-week-old male Zucker rats (obese (fa/fa, n = 8), lean (fal-, n = 8) and lean (-/-, n = 8)) were characterized via high-resolution H-1 NMR spectroscopy, and in parallel, the fecal microbial composition was investigated using fluorescence in situ hydridization (FISH) and denaturing gradient gel electrophoresis (DGGE) methods. All three Zucker strains had different relative abundances of the dominant members of their intestinal microbiota (FISH), with the novel observation of a Halomonas and a Sphingomonas species being present in the (fa/fa) obese strain on the basis of DGGE data. The two functionally and phenotypically normal Zucker strains (fal- and -/-) were readily distinguished from the (fa/fa) obese rats on the basis of their metabotypes with relatively lower urinary hippurate and creatinine, relatively higher levels of urinary isoleucine, leucine and acetate and higher plasma LDL and VLDL levels typifying the (fa/fa) obese strain. Collectively, these data suggest a conditional host genetic involvement in selection of the microbial species in each host strain, and that both lean and obese animals could have specific metabolic phenotypes that are linked to their individual microbiomes.
Resumo:
Here we introduce a computer database that allows for the rapid retrieval of physicochemical properties, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes information about a protein or a list of proteins. We applied PIGOK analyzing Schizosaccharomyces pombe proteins displaying differential expression under oxidative stress and identified their biological functions and pathways. The database is available on the Internet at http://pc4-133.ludwig.ucl.ac.uk/pigok.html.
Resumo:
A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is however a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from such as the fingertips of a robot hand, ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human - part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values to those of a human.? If so, what effects might this have on society?
Resumo:
A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is, however, a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place, neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from, for example, the fingertips of a robot hand, and ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication-potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human-part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values from those of a human? If so, what effects might this have on society? (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host-parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species.