910 resultados para LIGAND BINDING CHARACTERISTICS
Resumo:
Steroid receptors are ligand-regulated transcription factors that require coactivators for efficient activation of target gene expression. The binding protein of cAMP response element binding protein (CBP) appears to be a promiscuous coactivator for an increasing number of transcription factors and the ability of CBP to modulate estrogen receptor (ER)- and progesterone receptor (PR)-dependent transcription was therefore examined. Ectopic expression of CBP or the related coactivator, p300, enhanced ER transcriptional activity by up to 10-fold in a receptor- and DNA-dependent manner. Consistent with this, the 12S E1A adenoviral protein, which binds to and inactivates CBP, inhibited ER transcriptional activity, and exogenous CBP was able to partially overcome this effect. Furthermore, CBP was able to partially reverse the ability of active ER to squelch PR-dependent transcription, indicating that CBP is a common coactivator for both receptors and that CBP is limiting within these cells. To date, the only other coactivator able to significantly stimulate receptor-dependent transcription is steroid receptor coactivator-1 (SRC-1). Coexpression of CBP and SRC-1 stimulated ER and PR transcriptional activity in a synergistic manner and indicated that these two coactivators are not functional homologues. Taken together, these data suggest that both CBP and SRC-1 may function in a common pathway to efficiently activate target gene expression.
Resumo:
Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease.
Resumo:
High molecular weight kininogen (HK) and factor XII are known to bind to human umbilical vein endothelial cells (HUVEC) in a zinc-dependent and saturable manner indicating that HUVEC express specific binding site(s) for those proteins. However, identification and immunochemical characterization of the putative receptor site(s) has not been previously accomplished. In this report, we have identified a cell surface glycoprotein that is a likely candidate for the HK binding site on HUVECs. When solubilized HUVEC membranes were subjected to an HK-affinity column in the presence or absence of 50 microM ZnCl2 and the bound membrane proteins eluted, a single major protein peak was obtained only in the presence of zinc. SDS/PAGE analysis and silver staining of the protein peak revealed this protein to be 33 kDa and partial sequence analysis matched the NH2 terminus of gC1q-R, a membrane glycoprotein that binds to the globular "heads" of C1q. Two other minor proteins of approximately 70 kDa and 45 kDa were also obtained. Upon analysis by Western blotting, the 33-kDa band was found to react with several monoclonal antibodies (mAbs) recognizing different epitopes on gC1q-R. Ligand and dot blot analyses revealed zinc-dependent binding of biotinylated HK as well as biotinylated factor XII to the isolated 33-kDa HUVEC molecule as well as recombinant gC1q-R. In addition, binding of 125I-HK to HUVEC cells was inhibited by selected monoclonal anti-gC1q-R antibodies. C1q, however, did not inhibit 125I-HK binding to HUVEC nor did those monoclonals known to inhibit C1q binding to gC1q-R. Taken together, the data suggest that HK (and factor XII) bind to HUVECs via a 33-kDa cell surface glycoprotein that appears to be identical to gC1q-R but interact with a site on gC1q-R distinct from that which binds C1q.
Resumo:
Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.
Resumo:
To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.
Resumo:
By using proteolysis, recombinant mutant proteins, or synthetic peptides and by testing these reagents in liquid phase binding or nuclear import assays, we have mapped binding regions of karyopherin alpha. We found that the C-terminal region of karyopherin alpha recognizes the nuclear localization sequence (NLS), whereas its N-terminal region binds karyopherin beta. Surprisingly, karyopherin alpha also contains an NLS. Thus, karyopherin alpha belongs to a group of proteins that contain both a ligand (NLS) and a cognate receptor (NLS recognition site) in one molecule with a potential for autologous ligand-receptor interactions. The NLS of karyopherin alpha overlaps with the binding site of karyopherin alpha for karyopherin beta. Hence, binding of karyopherin beta to karyopherin alpha covers the NLS of karyopherin alpha. This prevents autologous ligand receptor interactions and explains the observed cooperative binding of karyopherin alpha to a heterologous NLS protein in the presence of karyopherin beta.
Resumo:
A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.
Resumo:
Posttranscriptional regulation of genes of mammalian iron metabolism is mediated by the interaction of iron regulatory proteins (IRPs) with RNA stem-loop sequence elements known as iron-responsive elements (IREs). There are two identified IRPs, IRP1 and IRP2, each of which binds consensus IREs present in eukaryotic transcripts with equal affinity. Site-directed mutagenesis of IRP1 and IRP2 reveals that, although the binding affinities for consensus IREs are indistinguishable, the contributions of arginine residues in the active-site cleft to the binding affinity are different in the two RNA binding sites. Furthermore, although each IRP binds the consensus IRE with high affinity, each IRP also binds a unique alternative ligand, which was identified in an in vitro systematic evolution of ligands by exponential enrichment procedure. Differences in the two binding sites may be important in the function of the IRE-IRP regulatory system.
Resumo:
The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy.
Resumo:
To determine inhalational anesthetic binding domains on a ligand-gated ion channel, I used halothane direct photoaffinity labeling of the nicotinic acetylcholine receptor (nAChR) in native Torpedo membranes. [14C]Halothane photoaffinity labeling of both the native Torpedo membranes and the isolated nAChR was saturable, with Kd values within the clinically relevant range. All phospholipids were labeled, with greater than 95% of the label in the acyl chain region. Electrophoresis of labeled nAChR demonstrated no significant subunit selectivity for halothane incorporation. Within the alpha-subunit, greater than 90% of label was found in the endoprotease Glu-C digestion fragments which contain the four transmembrane regions, and the pattern was different from that reported for photoactivatable phospholipid binding to the nAChR. Unlabeled halothane reduced labeling more than did isoflurane, suggesting differences in the binding domains for inhalational anesthetics in the nAChR. These data suggest multiple similar binding domains for halothane in the transmembrane region of the nAChR.
Resumo:
Superantigens, such as staphylococcal enterotoxin B (SEB), elicit a strong proliferative response in T cells when presented in the context of major histocompatibility complex (MHC) class II molecules. We observed a similar T-cell response, when MHC class II-negative epidermal cell lines were employed as antigen-presenting cells. Immunoprecipitation studies indicated that the ligand to which SEB bound had a molecular mass of 46 kDa. Radiolabeled SEB could be immunoprecipitated from isolated membrane proteins on the SCC13 epidermal cell line with a monoclonal antibody directed against the MHC class I molecule, and transfection of the K-562 cell line with MHC class I molecules showed a 75% increased SEB-binding capacity compared with the nontransfected MHC class I- and class II-negative counterpart. In functional studies, antibodies to the MHC class I molecule inhibited T-cell proliferation by at least 50%. From these studies, we conclude that MHC class I molecules on malignant squamous cell carcinomas serve as ligands for SEB, which, given the appropriate costimulatory signals, is sufficient to allow for superantigen-induced T-cell proliferation.
Resumo:
Results presented here demonstrate that the thermodynamics of oligocation binding to polymeric and oligomeric DNA are not equivalent because of long-range electrostatic effects. At physiological cation concentrations (0.1-0.3 M) the binding of an oligolysine octacation KWK6-NH2 (+8 charge) to single-stranded poly(dT) is much stronger per site and significantly more salt concentration dependent than the binding of the same ligand to an oligonucleotide, dT(pdT)10 (-10 charge). These large differences are consistent with Poisson-Boltzmann calculations for a model that characterizes the charge distributions with key preaveraged structural parameters. Therefore, both the experimental and the theoretical results presented here show that the polyelectrolyte character of a polymeric nucleic acid makes a large contribution to both the magnitude and the salt concentration dependence of its binding interactions with simple oligocationic ligands.
Resumo:
Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.
Resumo:
An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
Resumo:
An in vitro selection technique was used to identify a specific high-affinity DNA ligand targeted to human neutrophil elastase (HNE). 1H NMR data and a comparative analysis of the selected sequences suggest that the DNA folds into a G-quartet structure with duplexed ends. The high-affinity binding DNA alone did not inhibit the enzymatic activity of HNE. The DNA was covalently attached to a tetrapeptide, N-methoxysuccinyl-Ala-Ala-Pro-Val, that is a weak competitive inhibitor of HNE. HNE was inhibited by this DNA-peptide conjugate nearly five orders of magnitude more effectively than by the peptide alone. These results demonstrate that in vitro-selected nucleic acids can be used as a vehicle for molecular delivery.