859 resultados para LEWY BODIES
Resumo:
There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.
Resumo:
Kimberlite terminology remains problematic because both descriptive and genetic terms are mixed together in most existing terminology schemes. In addition, many terms used in existing kimberlite terminology schemes are not used in mainstream volcanology, even though kimberlite bodies are commonly the remains of kimberlite volcanic vents and edifices. We build on our own recently published approach to kimberlite facies terminology, involving a systematic progression from descriptive to genetic. The scheme can be used for both coherent kimberlite (i.e. kimberlite that was emplaced without undergoing any fragmentation processes and therefore preserving coherent igneous textures) and fragmental kimberlites. The approach involves documentation of components, textures and assessing the degree and effects of alteration on both components and original emplacement textures. This allows a purely descriptive composite component, textural and compositional petrological rock or deposit name to be constructed first, free of any biases about emplacement setting and processes. Then important facies features such as depositional structures, contact relationships and setting are assessed, leading to a composite descriptive and genetic name for the facies or rock unit that summarises key descriptive characteristics, emplacement processes and setting. Flow charts summarising the key steps in developing a progressive descriptive to genetic terminology are provided for both coherent and fragmental facies/deposits/rock units. These can be copied and used in the field, or in conjunction with field (e.g. drill core observations) and petrographic data. Because the approach depends heavily on field scale observations, characteristics and process interpretations, only the first descriptive part is appropriate where only petrographic observations are being made. Where field scale observations are available the progression from developing descriptive to interpretative terminology can be used, especially where some petrographic data also becomes available.
Resumo:
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.