971 resultados para LDH-C4
Resumo:
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Resumo:
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.
Resumo:
Different pathogens, such as Escherichia coli and Staphylococcus aureus, can be responsible for different outcomes of mastitis; that is, acute and severe or chronic and subclinical. These differences in the disease could be related to different mammary responses to the pathogens. The objective of this study was to determine if intramammary challenge with the endotoxins lipopolysaccharide (LPS), from E. coli, and lipoteichoic acid (LTA), from Staph. aureus, induce different immune responses in vivo in milk cells and mammary tissue. To provide a reference level for comparing the challenge and to show the different stimulation of the mammary immune system on a quantitatively similar level, dosages of LPS and LTA were chosen that induced an increase of somatic cells in milk to similar maxima. One udder quarter in each of 21 lactating dairy cows was challenged with 0.2 mug of LPS or 20 mug of LTA. From these quarters and from respective control quarters, milk cells or tissue biopsies were obtained at 0, 6, and 12h relative to the challenge to measure mRNA expression of tumor necrosis factor-alpha (TNFalpha), IL-1beta, IL-8, lactoferrin, and RANTES (regulated upon activation, normal T-cell expressed and secreted). Furthermore, if no biopsies were performed, hourly milk samples were taken for measurement of somatic cell count, lactate dehydrogenase (LDH), and TNFalpha. Somatic cell count increased in all treatments to similar maxima with LPS and LTA treatments. Concentrations of TNFalpha in milk increased with LPS but not with LTA. The activity of LDH in milk increased in both treatments and was more pronounced with LPS than with LTA. The mRNA expression of TNFalpha, IL-1beta, IL-8, and RANTES showed increases in milk cells, and LPS was a stronger inducer than LTA. Lactoferrin mRNA expression decreased in milk cells with LPS and LTA treatments. The measured factors did not change in either treatment in mammary tissue. Challenge of udder quarters with dosages of LPS and LTA that induce similar increases in SCC stimulate the appearance of different immune factor patterns. This dissimilar response to LPS and LTA may partly explain the different course and intensity of mastitis after infection with E. coli and Staph. aureus, respectively.
Resumo:
INTRODUCTION: The ultrastructure of venous valves and walls in chronic venous disease was investigated. METHODS: Consecutive patients were categorised into one of three groups (group A: patients with C1 venous disease in accordance with CEAP (Clinical severity, Etiology, Anatomy, Pathophysiology); group B: C2 and C3; group C: C4, C5 and C6). The terminal or preterminal valve and adjacent vessel wall was harvested from the great saphenous vein. Sections were examined with a transmission electron microscope. The volumes of elastin and of collagen per unit surface area of valve were assessed, as well as the surface endothelium of valve and vessel wall. RESULTS: The study population consisted of 17 patients. The elastin ratio was analysed by means of stereology. Mean values were: in group A, 0.45 μm3/m2; in group B, 0.67 μm3/m2; in group C, 0.97 μm3/m2. The ratio was similar for collagen (A, 15.7 μm3/m2; B, 26.8 μm3/m2; C, 30.1 μm3/m2). Surface analysis of the valve endothelium and the adjacent vessel wall endothelium showed a trend towards increasing damage with more severe disease. CONCLUSIONS: With progression of venous disease, the valve elastin content, assessed morphologically, seems to increase, and the endothelium of the venous valve and the vein wall tend to show more damage.
Resumo:
Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40-100) x 10(3) cells/ml and very low SCC of < 20 x 10(3) cells/ml were challenged with lipopolysaccharide (LPS) from Escherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor alpha (TNF-alpha) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 mug LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-alpha concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1beta and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-alpha and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-alpha concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-alpha, IL-8, IL-1beta, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.
Resumo:
Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.
Resumo:
In modern life- and medical-sciences major efforts are currently concentrated on creating artificial photoenzymes, consisting of light- oxygen-voltage-sensitive (LOV) domains fused to a target enzyme. Such protein constructs possess great potential for controlling the cell metabolism as well as gene function upon light stimulus. This has recently been impressively demonstrated by designing a novel artificial fusion protein, connecting the AsLOV2-Jα-photosensor from Avena sativa with the Rac1-GTPase (AsLOV2-Jα-Rac1), and by using it, to control the motility of cancer cells from the HeLa-line. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their signaling pathway after photoexcitation is still in its infancy. Here, we show through computer simulations of the AsLOV2-Jα-Rac1-photoenzyme that the early processes after formation of the Cys450-FMN-adduct involve the breakage of a H-bond between the carbonyl oxygen FMN-C4O and the amino group of Gln513, followed by a rotational reorientation of its sidechain. This initial event is followed by successive events including β-sheet tightening and transmission of torsional stress along the Iβ-sheet, which leads to the disruption of the Jα-helix from the N-terminal end. Finally, this process triggers the detachment of the AsLOV2-Jα-photosensor from the Rac1-GTPase, ultimately enabling the activation of Rac1 via binding of the effector protein PAK1.
Resumo:
Histamine, leukotriene C4, IL-4, and IL-13 are major mediators of allergy and asthma. They are all formed by basophils and are released in particularly large quantities after stimulation with IL-3. Here we show that supernatants of activated mast cells or IL-3 qualitatively change the makeup of granules of human basophils by inducing de novo synthesis of granzyme B (GzmB), without induction of other granule proteins expressed by cytotoxic lymphocytes (granzyme A, perforin). This bioactivity of IL-3 is not shared by other cytokines known to regulate the function of basophils or lymphocytes. The IL-3 effect is restricted to basophil granulocytes as no constitutive or inducible expression of GzmB is detected in eosinophils or neutrophils. GzmB is induced within 6 to 24 hours, sorted into the granule compartment, and released by exocytosis upon IgE-dependent and -independent activation. In vitro, there is a close parallelism between GzmB, IL-13, and leukotriene C4 production. In vivo, granzyme B, but not the lymphoid granule marker granzyme A, is released 18 hours after allergen challenge of asthmatic patients in strong correlation with interleukin-13. Our study demonstrates an unexpected plasticity of the granule composition of mature basophils and suggests a role of granzyme B as a novel mediator of allergic diseases.
Resumo:
Monostotic fibrous dysplasia of the spine is a rare entity. Only 26 cases, of which 11 were located in the cervical spine, are to be found in the literature. We report a 56-year-old male patient with cervicobrachialgia of half year's duration. Radiographs showed a diffuse destruction of the vertebral body and the spinous process of C4. A biopsy of the spinous process confirmed histopathologically a fibrous dysplasia. Due to minor symptoms, no surgical treatment was performed or is planned unless in case of increasing pain, an acute instability or neurological symptoms.
Prostate specific antigen expression does not necessarily correlate with prostate cancer cell growth
Resumo:
PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.
Resumo:
The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins.
Resumo:
OBJECTIVES: The characterization of Giardia lamblia WB C6 strains resistant to metronidazole and to the nitro-thiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] as the parent compound of thiazolides, a novel class of anti-infective drugs with a broad spectrum of activities against a wide variety of helminths, protozoa and enteric bacteria. METHODS: Issuing from G. lamblia WB C6, we have generated two strains exhibiting resistance to nitazoxanide (strain C4) and to metronidazole (strain C5) and determined their susceptibilities to both drugs. Using quantitative RT-PCR, we have analysed the expression of genes that are potentially involved in resistance formation, namely genes encoding pyruvate oxidoreductases (POR1 and POR2), nitroreductase (NR), protein disulphide isomerases (PDI2 and PDI4) and variant surface proteins (VSPs; TSA417). We have cloned and expressed PDI2 and PDI4 in Escherichia coli. Using an enzyme assay based on the polymerization of insulin, we have determined the activities of both enzymes in the presence and absence of nitazoxanide. RESULTS: Whereas C4 was cross-resistant to nitazoxanide and to metronidazole, C5 was resistant only to metronidazole. Transcript levels of the potential targets for nitro-drugs POR1, POR2 and NR were only slightly modified, PDI2 transcript levels were increased in both resistant strains and PDI4 levels in C4. This correlated with the findings that the functional activities of recombinant PDI2 and PDI4 were inhibited by nitazoxanide. Moreover, drastic changes were observed in VSP gene expression. CONCLUSIONS: These results suggest that resistance formation in Giardia against nitazoxanide and metronidazole is linked, and possibly mediated by, altered gene expression in drug-resistant strains compared with non-resistant strains of Giardia.
Resumo:
In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.