950 resultados para Key distribution
Resumo:
Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI) competition. This paper first proposes an optimal electricity distribution (OED) framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics). This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
Resumo:
Peggy Shaw’s RUFF, (USA 2013) and Queensland Theatre Company’s collaboration with Queensland University of Technology, Total Dik!, (Australia 2013) overtly and evocatively draw on an aestheticized use of the cinematic techniques and technologies of Chroma Key to reveal the tensions in their production and add layers to their performances. In doing so they offer invaluable insight where the filmic and theatrical approaches overlap. This paper draws on Eckersall, Grehan and Scheer’s New Media Dramaturgy (2014) to reposition the frame as a contribution to intermedial theatre and performance practices in light of increasing convergence between seemingly disparate discourses. In RUFF, the scenic environment replicates a chroma-key ‘studio’ which facilitates the reconstruction of memory displaced after a stroke. RUFF uses the screen and projections to recall crooners, lounge singers, movie stars, rock and roll bands, and an eclectic line of eccentric family members living inside Shaw. While the show pays tribute to those who have kept her company across decades of theatrical performance, use of non-composited chroma-key technique as a theatrical device and the work’s taciturn revelation of the production process during performance, play a central role in its exploration of the juxtaposition between its reconstructed form and content. In contrast Total Dik! uses real-time green screen compositing during performance as a scenic device. Actors manipulate scale models, refocus cameras and generate scenes within scenes in the construction of the work’s examination of an isolated Dictator. The ‘studio’ is again replicated as a site for (re)construction, only in this case Total Dik! actively seeks to reveal the process of production as the performance plays out. Building on RUFF, and other works such as By the Way, Meet Vera Stark, (2012) and Hotel Modern’s God’s Beard (2012), this work blends a convergence of mobile technologies, models, and green screen capture to explore aspects of transmedia storytelling in a theatrical environment (Jenkins, 2009, 2013). When a green screen is placed on stage, it reads at once as metaphor and challenge to the language of theatre. It becomes, or rather acts, as a ‘sign’ that alludes to the nature of the reconstructed, recomposited, manipulated and controlled. In RUFF and in Total Dik!, it is also a place where as a mode of production and subsequent reveal, it adds weight to performance. These works are informed by Auslander (1999) and Giesenkam (2007) and speak to and echo Lehmann’s Postdramatic Theatre (2006). This paper’s consideration of the integration of studio technique and live performance as a dynamic approach to multi-layered theatrical production develops our understanding of their combinatory use in a live performance environment.
Resumo:
As negative employee attitudes towards alcohol and other drug (AOD) policies may have serious consequences for organizations, the present study examined demographic and attitudinal dimensions leading to employees’ perceptions of AOD policy effectiveness. Survey responses were obtained from 147 employees in an Australian agricultural organization. Three dimensions of attitudes towards AOD policies were examined: knowledge of policy features, attitudes towards testing, and preventative measures such as job design and organizational involvement in community health. Demographic differences were identified, with males and blue-collar employees reporting significantly more negative attitudes towards the AOD policy. Attitude dimensions were stronger predictors of perceptions of policy effectiveness than demographics, and the strongest predictor was preventative measures. This suggests that organizations should do more than design adequate and fair AOD policies, and take a more holistic approach to AOD impairment by engaging in workplace design to reduce AOD use and promote a consistent health message to employees and the community.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant. The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the developments in Australia and Queensland.
Resumo:
Issues addressed: Hand hygiene in hospitals is vital to limit the spread of infections. This study aimed to identify key beliefs underlying hospital nurses’ hand-hygiene decisions to consolidate strategies that encourage compliance. Methods: Informed by a theory of planned behaviour belief framework, nurses from 50 Australian hospitals (n = 797) responded to how likely behavioural beliefs (advantages and disadvantages), normative beliefs (important referents) and control beliefs (barriers) impacted on their hand-hygiene decisions following the introduction of a national ‘5 moments for hand hygiene’ initiative. Two weeks after completing the survey, they reported their hand-hygiene adherence. Stepwise regression analyses identified key beliefs that determined nurses’ hand-hygiene behaviour. Results: Reducing the chance of infection for co-workers influenced nurses’ hygiene behaviour, with lack of time and forgetfulness identified as barriers. Conclusions: Future efforts to improve hand hygiene should highlight the potential impact on colleagues and consider strategies to combat time constraints, as well as implementing workplace reminders to prompt greater hand-hygiene compliance. So what? Rather than emphasising the health of self and patients in efforts to encourage hand-hygiene practices, a focus on peer protection should be adopted and more effective workplace reminders should be implemented to combat forgetting.
Resumo:
Objective The main aim of this study was to identify young drivers' underlying beliefs (i.e., behavioral, normative, and control) regarding initiating, monitoring/reading, and responding to social interactive technology (i.e., functions on a Smartphone that allow the user to communicate with other people). Method This qualitative study was a beliefs elicitation study in accordance with the Theory of Planned Behavior and sought to elicit young drivers' behavioral (i.e., advantages, disadvantages), normative (i.e., who approves, who disapproves), and control beliefs (i.e., barriers, facilitators) which underpin social interactive technology use while driving. Young drivers (N = 26) aged 17 to 25 years took part in an interview or focus group discussion. Results While differences emerged between the three behaviors of initiating, monitoring/reading, and responding for each of the behavioral, normative, and control belief categories, the strongest distinction was within the behavioral beliefs category (e.g., communicating with the person that they were on the way to meet was an advantage of initiating; being able to determine whether to respond was an advantage of monitoring/reading; and communicating with important people was an advantage of responding). Normative beliefs were similar for initiating and responding behaviors (e.g., friends and peers more likely to approve than other groups) and differences emerged for monitoring/reading (e.g., parents were more likely to approve of this behavior than initiating and responding). For control beliefs, there were differences between the beliefs regarding facilitators of these behaviors (e.g., familiar roads and conditions facilitated initiating; having audible notifications of an incoming communication facilitated monitoring/reading; and receiving a communication of immediate importance facilitated responding); however, the control beliefs that presented barriers were consistent across the three behaviors (e.g., difficult traffic/road conditions). Conclusion The current study provides an important addition to the extant literature and supports emerging research which suggests initiating, monitoring/reading, and responding may indeed be distinct behaviors with different underlying motivations.
Resumo:
This Special Issue presents recent research advances in various aspects of advanced nanomaterials including synthesis, micro- and nanostructures, mechanical properties, modeling, and applications for material nanotechnology community. In particular, it aims to reflect recent advances in mechanical behaviors, for example, stiffness, strength, ductility, fatigue, and wear resistance, of various nanomaterials including nanocrystalline, inorganic, nonmetallic nanomaterials, composites with nanosized fillers, and biomaterials with nanosized structures. The role of this Special Issue is to bridge the gaps among fabrication techniques, experimental techniques, numerical modeling, and applications for some new nanomaterials and to investigate some key issues related to the mechanical properties of the nanomaterials. It brings together researchers working at the frontier of the mechanical behavior of nanomaterials...
Resumo:
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.
Resumo:
This paper presents an efficient noniterative method for distribution state estimation using conditional multivariate complex Gaussian distribution (CMCGD). In the proposed method, the mean and standard deviation (SD) of the state variables is obtained in one step considering load uncertainties, measurement errors, and load correlations. In this method, first the bus voltages, branch currents, and injection currents are represented by MCGD using direct load flow and a linear transformation. Then, the mean and SD of bus voltages, or other states, are calculated using CMCGD and estimation of variance method. The mean and SD of pseudo measurements, as well as spatial correlations between pseudo measurements, are modeled based on the historical data for different levels of load duration curve. The proposed method can handle load uncertainties without using time-consuming approaches such as Monte Carlo. Simulation results of two case studies, six-bus, and a realistic 747-bus distribution network show the effectiveness of the proposed method in terms of speed, accuracy, and quality against the conventional approach.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
Integration of small-scale electricity generators, known as distributed generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of the synchronous-type generator has potential to give DG a better chance at participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of DG as a voltage regulator and, at the same time, minimize interaction with other active devices, such as an on-load tap changing transformer and a voltage regulator. The technique has been developed based on the concept of control zone, line drop compensation, dead band, as well as the choice of controllers' parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.
Resumo:
This research has brought new scientific insight into the characteristics of airborne engineered nanoparticles, which is essential when considering their effects on human health. The key findings of the work were a harmonised and traceable protocol for the size characterisation of engineered nanoparticles, and quantification of their emissions and dynamics in workplaces. The novelty of this project is in coupling a comprehensive experimental measurement approach with innovative and effective data interpretation. Also, for the first time, the existence of a general trend in the emission of nanoparticles from a nanotechnology process was investigated.