962 resultados para KINASE-C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the fore-front of cancer research, gene therapy offers the potential to either promote cell death or alter the behavior of tumor-cells. One example makes use of a toxic phenotype generated by the prodrug metabolizing gene, thymidine kinase (HSVtk) from the Herpes Simplex Virus. This gene confers selective toxicity to a relatively nontoxic prodrug, ganciclovir (GCV). Tumor cells transduced with the HSVtk gene are sensitive to 1-50 $\mu$M GCV; normal tissue is insensitive up to 150-250 $\mu$M GCV. Utilizing these different sensitivities, it is possible to selectively ablate tumor cells expressing this gene. Interestingly, if a HSVtk$\sp+$ expressing population is mixed with a HSVtk$\sp-$ population at high density, all the cells are killed after GCV administration. This phenomenon for killing all neighboring cells is termed the "bystander effect", which is well documented in HSVtk$\sp-$ GCV systems, though its exact mechanism of action is unclear.^ Using the mouse colon carcinoma cell line CT26, data are presented supporting possible mechanisms of "bystander effect" killing of neighboring CT26-tk$\sp-$cells. A major requirement for bystander killing is the prodrug GCV: as dead or dying CT26tk$\sp+$ cells have no toxic effect on neighboring cells in its absence. In vitro, it appears the bystander effect is due to transfer of toxic GCV-metabolites, through verapamil sensitive intracellular-junctions. Additionally, possible transfer of the HSVtk enzyme to bystander cells after GCV addition, may play a role in bystander killing. A nude mouse model suggests that in a 50/50 (tk$\sp+$/tk$\sp-$) mixture of CT26 cells the bystander eradication of tumors does not involve an immune component. Additionally in a possible clinical application, the "bystander effect" can be directly exploited to eradicate preexisting CT26 colon carcinomas in mice by intratumoral implantation of viable or lethally irradiated CT26tk$\sp+$ cells and subsequent GCV administration. Lastly, an application of this toxic phenotype gene to a clinical marking protocol utilizing a recombinant adenoviral vector carrying the bifunctional protein GAL-TEK to eradicate spontaneously-arisen or vaccine-induced fibrosarcomas in cats is demonstrated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES In cardiac muscle, ischemia reperfusion (IR) injury is attenuated by mitochondrial function, which may be upregulated by focal adhesion kinase (FAK). The aim of this study was to determine whether increased FAK levels reduced rhabdomyolysis in skeletal muscle too. MATERIAL AND METHODS In a translational in vivo experiment, rat lower limbs were subjected to 4 hours of ischemia followed by 24 or 72 hours of reperfusion. FAK expression was stimulated 7 days before (via somatic transfection with pCMV-driven FAK expression plasmid) and outcomes were measured against non-transfected and empty transfected controls. Slow oxidative (i.e., mitochondria-rich) and fast glycolytic (i.e., mitochondria-poor) type muscles were analyzed separately regarding rhabdomyolysis, apoptosis, and inflammation. Severity of IR injury was assessed using paired non-ischemic controls. RESULTS After 24 hours of reperfusion, marked rhabdomyolysis was found in non-transfected and empty plasmid-transfected fast-type glycolytic muscle, tibialis anterior. Prior transfection enhanced FAK concentration significantly (p = 0.01). Concomitantly, levels of BAX, promoting mitochondrial transition pores, were reduced sixfold (p = 0.02) together with a blunted inflammation (p = 0.01) and reduced rhabdomyolysis (p = 0.003). Slow oxidative muscle, m. soleus, reacted differently: although apoptosis was detectable after IR, rhabdomyolysis did not appear before 72 hours of reperfusion; and FAK levels were not enhanced in ischemic muscle despite transfection (p = 0.66). CONCLUSIONS IR-induced skeletal muscle rhabdomyolysis is a fiber type-specific phenomenon that appears to be modulated by mitochondria reserves. Stimulation of FAK may exploit these reserves constituting a potential therapeutic approach to reduce tissue loss following acute limb IR in fast-type muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor (FGFR) family. Similar to the classical receptors FGFR1-FGFR4, it contains three extracellular Ig-like domains and a single transmembrane domain. However, it lacks the intracellular tyrosine kinase domain that would be required for signal transduction, but instead contains a short intracellular tail with a peculiar histidine-rich motif. This motif has been conserved during evolution from mollusks to echinoderms and vertebrates. Only the sequences of FgfrL1 from a few rodents diverge at the C-terminal region from the canonical sequence, as they appear to have suffered a frameshift mutation within the histidine-rich motif. This mutation is observed in mouse, rat and hamster, but not in the closely related rodents mole rat (Nannospalax) and jerboa (Jaculus), suggesting that it has occurred after branching of the Muridae and Cricetidae from the Dipodidae and Spalacidae. The consequence of the frameshift is a deletion of a few histidine residues and an extension of the C-terminus by about 40 unrelated amino acids. A similar frameshift mutation has also been observed in a human patient with a craniosynostosis syndrome as well as in several patients with colorectal cancer and bladder tumors, suggesting that the histidine-rich motif is prone to mutation. The reason why this motif was conserved during evolution in most species, but not in mice, is not clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various Moloney murine sarcoma virus (Mo-MuSV) isolates contain a cellular sequence, termed mos, which is responsible for the transforming ability of Mo-MuSV. A serine kinase activity has been found to be associated with mos gene products of several isolates of Mo-MuSV. A mutant of Mo-MuSV strain 124 (designated MuSV ts110) is temperature-sensitive (ts) for transformation and encodes two proteins, P85('gag-mos) (an 85,000 M(,r) protein encoded by the gag and mos genes) and P58('gag), at the permissive temperature (28(DEGREES)C). At the nonpermissive temperature (39(DEGREES)C), only P58('gag) is found in MuSV ts110-infected NRK cells (6m2 cells). Both P85('gag-mos) and P58('gag) were phosphorylated when anti-gag immune complexes containing these proteins were incubated at 22(DEGREES)C with (lamda)-('32)P -ATP and MnCl(,2). The kinase detected in anti-gag complexes from 6m2 cells at permissive temperature was associated with P85('gag-mos) since immune complexes from 39(DEGREES)C 6m2 cells, which lack P85('gag-mos), produced no phosphorylated P58('gag) molecules. In addition, an anti-mos complex (anti-mos 37-55 complexes) allowed in vitro phosphorylation of P85('gag-mos) in the absence of P58('gag). No kinase activity was detectable with other gag gene products (e.g., Mo-MuSV-124 P62('gag)), suggesting that the P85('gag-mos) kinase activity was present within the mos portion of the protein. The P85('gag-mos) kinase activity was very thermolabile upon shifting 6m2 cells from permissive to nonpermissive temperatures (t(, 1/2) for inactivation = 5 min). In contrast, a spontaneous revertant of MuSV ts110 encodes a larger gag-mos protein (termed P100('gag-mos)) which contained a kinase activity stable to 39(DEGREES)C. Using the optimal conditions developed for the P85('gag-mos) kinase, Mo-MuSV-encoded p37('mos) was also found to be associated with a serine kinase activity. Phosphorylation of p37('mos) and a 43 Kd protein (super-phosphorylated p37('mos)) occurred in anti-mos(37-55) complexes from Mo-MuSV-124 acutely-infected NIH 3T3 cells, but neither in mos 37-55 peptide-blocked anti-mos(37-55) complexes nor in immune complexes from uninfected NIH 3T3 cells. Antibodies directed against the C-terminus of v-mos were found to inhibit the in vitro phosphorylation of p37('mos), suggesting that the extreme C-terminal sequence of v-mos may be important for an intrinsic kinase activity. This inhibitory action by antibodies to the C-terminus of p37('mos), when considered with all the other data reported here, provides convincing evidence that the v-mos gene encodes a serine protein kinase activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p21-activated kinase 5 (PAK5) is a serine/threonine protein kinase associated with the group 2 subfamily of PAKs. Although our understanding about PAK5 is very limited, it is receiving increasing interest due to its tissue specific expression pattern and important signaling properties. PAK5 is highly expressed in brain. Its overexpression induces neurite outgrowth in neuroblastoma cells and promotes survival in fibroblasts. ^ The serine/threonine protein kinase Raf-1 is an essential mediator of Ras-dependent signaling that controls the ERK/MAPK pathway. In contrast to PAK5, Raf-1 has been the subject of intensive investigation. However due to the complexity of its activation mechanism, the biological inputs controlling Raf-1 activation are not fully understood. ^ PAKs 1-3 are the known kinases responsible for phosphorylation of Raf-1 on serine 338, which is a crucial phosphorylation site for Raf-1 activation. However, dominant negative versions of these kinases do not block EGF-induced Raf-1 activation, indicating that other kinases may regulate the phosphorylation of Raf-1 on serine 338. ^ This thesis work was initiated to test whether the group 2 PAKs 4, 5 and 6 are responsible for EGF-induced Raf-1 activation. We found that PAK5, and to a lesser extent PAK4, can activate Raf-1 in cells. Our studies thereafter focused on PAK5. With the progress of our study we found that PAK5 does not significantly stimulate serine 338 phosphorylation of Triton X-100 soluble Raf-1. PAK5, however, constitutively and specifically associates with Raf-1 and targets it to a Triton X-100 insoluble, mitochondrial compartment, where PAK5 phosphorylates serine 338 of Raf-1. We further demonstrated that endogenous PAK5 and Raf-1 colocalize in Hela cells at the mitochondrial outer membrane. In addition, we found that the mitochondria-targeting of PAK5 is determined by its C-terminal kinase domain plus the upstream proximal region, and facilitated by the N-terminal p21 binding domain. We also demonstrated that Rho GTPases Cdc42 and RhoD associate with and regulate the subcellular localization of PAK5. Taken together, this work suggests that the mitochondria-targeting of PAK5 may link Ras and Rho GTPase-mediated signaling pathways, and sheds light on aspects of PAK5 signaling that may be important for regulating neuronal homeostasis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Caenorhabditis elegans germline is an excellent model system for studying meiosis, as the gonad contains germ cells in all stages of meiosis I prophase in a linear temporal and spatial pattern. To form healthy gametes, many events must be coordinated. Failure of any step in the process can reduce fertility. Here, we describe a C. elegans Germinal Center Kinase, GCK-1, that is essential for the accurate progression of germ cells through meiosis I prophase. In the absence of GCK-1, germ cells undergo precocious maturation due to the activation of a specific MAP kinase isoform. Furthermore, GCK-1 localizes to P-bodies, RNP particles that have been implicated in RNA degradation and translational control. Like two other components of C. elegans germline P-bodies, GCK-1 functions to limit physiological germ cell apoptosis. This is the first study to identify a role for a GCK-III kinase in metazoan germ cell development and to link P-body function with MAP kinase activation and germ cell maturation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes. I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos showed aberrant centrosome dynamics in TLK-1-depleted embryos. Several mechanisms contribute to spindle rotation, one of which is the anchoring of astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the cell cortices, and the types of microtubule attachments appear to differ from wild-type embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus suggesting that the delayed spindle rotation could be in part due to a lack of appropriate microtubule attachments to the cell cortex. Together with recently published biochemical data revealing the Tousled-like kinases associate with components of the dynein microtubule motor complex in humans, these data suggest that Tousled-like kinases play an important role in mitotic spindle assembly and positioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating the mechanism of kinetochore assembly is important to have a better understanding of the regulation that controls chromosome segregation. Our previous work identified the C. elegans Tousled-like kinase (TLK-1) as a mitotic kinase and depletion of TLK-1 results in embryonic lethality, characterized by nuclei displaying poor mitotic chromosome alignment, lagging chromosome, and chromosome bridges during anaphase. Additionally, previous studies from our group revealed that TLK-1 is phosphorylated independently by Aurora B at serine 634, and by CHK-1 at threonine T610. The research presented herein reveals that both phosphorylated forms of TLK-1 associate with the kinetochore during mitosis. Moreover, by systematic depletion of kinetochore proteins, I uncovered that pTLK-1 is bona fide kinetochore component that is located at the outer kinetochore layer, influencing the microtubule-binding interface. I also demonstrated that TLK-1 is necessary for the kinetochore localization of the microtubule interacting proteins CLS-2 and LIS-1 and I show that embryos depleted of TLK-1 presented an aberrant twisted kinetochore pattern. Furthermore, I established that the inner kinetochore protein KNL-2 is an in vitro substrate of TLK-1 indicating a possible role of TLK-1 in regulating centromeric assembly. Collectively, these results suggest a novel role for the Tousled-like kinase in regulation of kinetochore assembly and microtubule dynamics and demonstrate the necessity of TLK-1 for proper chromosome segregation in C. elegans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.