1000 resultados para K2NiF4 structure
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary organization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
Rapid solidification of an equiatomic In-Se alloy resulted in the formation of an equilibrium InSe-In6Se7 phase mixture. The InSe phase was found to be polytypic and exhibited the structural variants 2H, 3H, and 4H. The 4H polytype was found to be in considerably higher proportion compared to 2H and 3H types. The In6Se7 phase was found to be hexagonal with a=0.8919 nm and c=1.4273 nm. Both In6Se 7 and the polytypes of InSe could be identified with the space group P61. The conductivity σ variation with temperature was found to be similar to that observed in disordered semiconducting materials. For temperatures >200 K, ln σ decreased linearly with T-1, phonon-assisted carrier excitation. For temperatures <200 K, ln σ decrease followed T-1/3 behavior, representative of variable-range hopping conduction of electrons.
Resumo:
The aim of the current study is to examine the influence of the channel external environment on power, and the effect of power on the distribution network structure within the People’s Republic of China. Throughout the study a dual research process was applied. The theory was constructed by elaborating the main theoretical premises of the study, the channel power theories, the political economy framework and the distribution network structure, but these marketing channel concepts were expanded with other perspectives from other disciplines. The main method applied was a survey conducted among 164 Chinese retailers, complemented by interviews, photographs, observations and census data from the field. This multi-method approach enabled not only to validate and triangulate the quantitative results, but to uncover serendipitous findings as well. The theoretical contribution of the current study to the theory of marketing channels power is the different view it takes on power. First, earlier power studies have taken the producer perspective, whereas the current study also includes a distributor perspective to the discussion. Second, many power studies have dealt with strongly dependent relationships, whereas the current study examines loosely dependent relationships. Power is dependent on unequal distribution of resources rather than based on high dependency. The benefit of this view is in realising that power resources and power strategies are separate concepts. The empirical material of the current study confirmed that at least some resources were significantly related to power strategies. The study showed that the dimension resources composed of technology, know-how and knowledge, managerial freedom and reputation was significantly related to non-coercive power. Third, the notion of different outcomes of power is a contribution of this study to the channels power theory even though not confirmed by the empirical results. Fourth, it was proposed that channel external environment other than the resources would also contribute to the channel power. These propositions were partially supported thus providing only partial contribution to the channel power theory. Finally, power was equally distributed among the different types of actors. The findings from the qualitative data suggest that different types of retailers can be classified according to the meaning the actors put into their business. Some are more business oriented, for others retailing is the only way to earn a living. The findings also suggest that in some actors both retailing and wholesaling functions emerge, and this has implications for the marketing channels structure.
Resumo:
CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
An organically templated iron(II) sulfate of the composition [H3N(CH2)2NH2(CH2)2(NH3]4[FeII 9F18(SO4)6]â9H2O with a distorted Kagome structure has been synthesized under solvothermal conditions in the presence of diethylenetriamine. The distortion of the hexagonal bronze structure comes from the presence of two different types of connectivity between the FeF4O2 octahedra and the sulfate tetrahedra. This compound exhibits magnetic properties different from those of an Fe(II) compound with a perfect Kagome structure and is a canted antiferromagnet at low temperatures.
Resumo:
We report on the dielectric proper-ties of bismuth aluminate and gallate with Bi:AI(Ga) ratio of 1: 1 and 12:1 prepared at high temperature and ambient pressure. These compounds crystallize in a noncentrosymmetric body-centered cubic structure (space group 123) with a similar to 10.18 angstrom rather than in the perovskite structure.This cubic phase is related to the gamma-Bi2O3 structure which has the actual chemical formula Bi-24(3+) (Bi3+Bi5+)O40-delta. In the aluminates and gallates studied by us, the Al and Ga ions are distributed over the 24f and 2a sites. These compounds exibit ferroclectric hysteresis at room temperature with a weak polarization. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
CloHI6N307P.2H20 , Mr = 357.2, triclinic, P1, a = 4-8520 (8), b = 8"3703 (8), c = 10.0199 (12) A, a= 104.578 (9),/3= 102.332 (13), 7=93.670(11) o, V = 381"75 A 3, Z = 1, Dx = 1"55, Dm = 1"53 Mg m -3, a(Cu Ka) = 1.5418 A,/z = 2.01 mm- l, F(000) = 188, T= 290 K, R = 0-049 for 1568 unique reflections.
Resumo:
A comparative study of the switching properties of pure and √-irradiated TGSe crystals has been carried out to see the effect of irradiation on the structure and dynamics of domains. The switching behaviour of √-irradiated TGSe has been found to be qualitatively similar to that of unirradiated crystal and this has been interpreted in terms of structural inhibition caused by the formation of radiolysis products as well as the difference between the domain structures of the unirradiated and irradiated samples. Confirmation of this has been obtained by studying the domain patterns using the etch method.
Resumo:
Seismic structural design is essentially the estimation of structural response to a forced motion, which may be deterministic or stochastic, imposed on the ground. The assumption that the same ground motion acts at every point of the base of the structure (or at every support) is not always justifiable; particularly in case of very large structures when considerable spatial variability in ground motion can exist over significant distances example long span bridges. This variability is partly due to the delay in arrival of the excitation at different supports (which is called the wave passage effect) and due to heterogeneity in the ground medium which results in incoherency and local effects. The current study examines the influence of the wave passage effect (in terms of delay in arrival of horizontal ground excitation at different supports and neglecting transmission through the structure) on the response of a few open-plane frame building structures with soil-structure interaction. The ground acceleration has been modeled by a suitably filtered white noise. As a special case, the ground excitation at different supports has also been treated as statistically independent to model the extreme case of incoherence due to local effects and due to modifications to the ground motion resulting from wave reflections and refractions in heterogeneous soil media. The results indicate that, even for relatively short spanned building frames, wave passage effect can be significant. In the absence of soil-structure interaction, it can significantly increase the root mean square (rms) value of the shear in extreme end columns for the stiffer frames but has negligible effect on the flexible frames when total displacements are considered. It is seen that pseudo-static displacements increasingly contribute to the rms value of column shear as the time delay increases both for the stiffer and for the more flexible frames. When soil-structure interaction is considered, wave passage effect (in terms of total displacements) is significant only for low soil shear modulus, G. values (where soil-structure interaction significantly lowers the fundamental frequency) and for stiff frames. The contribution of pseudo-static displacement to these rms values is found to decrease with increase in G. In general, wave passage effect for most interactive frames is insignificant compared to the attenuating effect a decrease in G, has on the response of the interactive structure to uniform support excitation. When the excitations at different supports are statistically independent, it is seen that for both the stiff and flexible frames, the rms value of the column shear in extreme end columns is several times larger (more for the stiffer frames) than the value corresponding to uniform base excitation with the pseudo-static displacements contributing over 99% of the rms value of column shear. Soil-structure interaction has an attenuating effect on the rms value of the column shear, the effect decreasing with increase in G,. Here too, the pseudo-static displacements contribute very largely to the column shear. The influence of the wave passage effect on the response of three 2-bay frames with and without soil-structure interaction to a recorded horizontal accelerogram is also examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.