931 resultados para Jenifer Roberts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terahertz power transmission spectroscopy (TPTS) measurements have been carried out to detect a difference between the hydration shells of G-quadruplex forming DNA sequences in strand and quadruplex configuration. Evidence of a change in hydration shell was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the UK’s BAe146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s-1 crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 hours and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining satellite data, atmospheric reanalyses and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earth's atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985-1999 period mean N (0.34 ± 0.67 Wm–2) is lower than for the 2000-2012 period (0.62 ± 0.43 Wm–2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mt. Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of 9 climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r ∼ 0.6) over the 1985-2012 period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of ecological principles into agricultural systems presents major opportunities for spreading risk at the crop and farm scale. This paper presents mechanisms by which diversity at several scales within the farming system can increase the stability of production. Diversity of above- and below-ground biota, but also genetic and phenotypic diversity within crops, has an essential role in safeguarding farm production. Novel mixtures of legume-grass leys have been shown to potentially provide significant benefits for pollinator and decomposer ecosystem services but to realise the greatest improvements carefully tailored farm management is needed such as mowing or grazing time, and the type and depth of cutivation. Complex farmland landscapes such as agroforestry systems have the potential to support pollinator abundance and diversity and spread risk across production enterprises. At the crop level, early results indicate that the vulnerability of pollen development, flowering and early grain set to abiotic stress can be ameliorated by managing flowering time through genotypic selection, and through the buffering effects of pollinators. Finally, the risk of sub-optimal quality in cereals can be mitigated through integration of near isogenic lines selected to escape specific abiotic stress events. We conclude that genotypic, phenotypic and community diversity can all be increased at multiple scales to enhance resilience in agricultural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of ethylene in regulating organ senescence in Arabidopsis has been investigated by studying the development of mutants that have an attenu- ated capacity to perceive the gas. The onset of leaf senescence and floral organ abscission was delayed in the ethylene-insensitive mutant etr1. The photosynthetic life span of rosette leaves was similarly extended in the gain- of-function mutant ers2, and this mutant also exhibited a delay in the timing of pod dehiscence primarily as a con- sequence of an extension in the final stages of senescence. A detailed analysis of yield revealed that whilst thousand grain weight was increased, by as much as 20 %, in etr1, ein4, and the loss-of-function mutant etr2, only the latter showed a significant increase in total weight of seeds produced per plant. The other studied mutants exhibited a reduction in total seed yield of almost 40 %. These observations are discussed in the context of the possible role of ethylene in regulating organ senescence and their significance in the breeding of crop plants with enhanced phenotypic characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quasi-stationary convective bands can cause large localised rainfall accumulations and are often anchored by topographic features. Here, the predictability of and mechanisms causing one such band are determined using ensembles of the Met Office Unified Model at convection-permitting resolution (1.5 km grid length). The band was stationary over the UK for 3 h and produced rainfall accumulations of up to 34 mm. The amount and location of the predicted rainfall was highly variable despite only small differences between the large-scale conditions of the ensemble members. Only three of 21 members of the control ensemble produced a stationary rain band; these three had the weakest upstream winds and hence lowest Froude number. Band formation was due to the superposition of two processes: lee-side convergence resulting from flow around an upstream obstacle and thermally forced convergence resulting from elevated heating over the upstream terrain. Both mechanisms were enhanced when the Froude number was lower. By increasing the terrain height (thus reducing the Froude number), the band became more predictable. An ensemble approach is required to successfully predict the possible occurrence of such quasi-stationary convective events because the rainfall variability is largely modulated by small variations of the large-scale flow. However, high-resolution models are required to accurately resolve the small-scale interactions of the flow with the topography upon which the band formation depends. Thus, although topography provides some predictability, the quasi-stationary convective bands anchored by it are likely to remain a forecasting challenge for many years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991–2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measure- ment, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with his- torical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets’ algorithmic basis, validation results, format, uncer- tainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982–2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assesses the influence of the El Niño–Southern Oscillation (ENSO) on global tropical cyclone activity using a 150-yr-long integration with a high-resolution coupled atmosphere–ocean general circulation model [High-Resolution Global Environmental Model (HiGEM); with N144 resolution: ~90 km in the atmosphere and ~40 km in the ocean]. Tropical cyclone activity is compared to an atmosphere-only simulation using the atmospheric component of HiGEM (HiGAM). Observations of tropical cyclones in the International Best Track Archive for Climate Stewardship (IBTrACS) and tropical cyclones identified in the Interim ECMWF Re-Analysis (ERA-Interim) are used to validate the models. Composite anomalies of tropical cyclone activity in El Niño and La Niña years are used. HiGEM is able to capture the shift in tropical cyclone locations to ENSO in the Pacific and Indian Oceans. However, HiGEM does not capture the expected ENSO–tropical cyclone teleconnection in the North Atlantic. HiGAM shows more skill in simulating the global ENSO–tropical cyclone teleconnection; however, variability in the Pacific is overpronounced. HiGAM is able to capture the ENSO–tropical cyclone teleconnection in the North Atlantic more accurately than HiGEM. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity, is used to further understand the response of tropical cyclone activity to ENSO in the North Atlantic and western North Pacific. The vertical wind shear response over the Caribbean is not captured in HiGEM compared to HiGAM and ERA-Interim. Biases in the mean ascent at 500 hPa in HiGEM remain in HiGAM over the western North Pacific; however, a more realistic low-level vorticity in HiGAM results in a more accurate ENSO–tropical cyclone teleconnection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project, using PRACE (Partnership for Advanced Computing in Europe) resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model GA3 configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km) and N512 (25 km), in order to study the impact of model resolution on high impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and North West Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African Easterly Waves and the African Easterly Jet. However, the intensity of the modelled tropical cyclones as measured by 10 m wind speed remain weak, and there is no indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of 50% in the frequency of Southern Hemisphere tropical cyclones, while in the Northern Hemisphere there is a reduction in the North Atlantic, and a shift in the Pacific with peak intensities becoming more common in the Central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer weak storms and proportionally more stronger storms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The XWS (eXtreme WindStorms) catalogue consists of storm tracks and model-generated maximum 3 s wind-gust footprints for 50 of the most extreme winter windstorms to hit Europe in the period 1979–2012. The catalogue is intended to be a valuable resource for both academia and industries such as (re)insurance, for example allowing users to characterise extreme European storms, and validate climate and catastrophe models. Several storm severity indices were investigated to find which could best represent a list of known high-loss (severe) storms. The best-performing index was Sft, which is a combination of storm area calculated from the storm footprint and maximum 925 hPa wind speed from the storm track. All the listed severe storms are included in the catalogue, and the remaining ones were selected using Sft. A comparison of the model footprint to station observations revealed that storms were generally well represented, although for some storms the highest gusts were underestimated. Possible reasons for this underestimation include the model failing to simulate strong enough pressure gradients and not representing convective gusts. A new recalibration method was developed to estimate the true distribution of gusts at each grid point and correct for this underestimation. The recalibration model allows for storm-to-storm variation which is essential given that different storms have different degrees of model bias. The catalogue is available at www.europeanwindstorms.org.