976 resultados para Irradiated seafood.
Resumo:
We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5×1019 W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.
Resumo:
We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 mu J are focused to intensities ranging between 10(13) and 10(17) W/cm(2). We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations.
Resumo:
Nitrogen is one of the most common impurities in diamond. On a substitutional site it acts as a deep donor, approximately 1.7 eV below the conduction band. Irradiation of nitrogen containing diamond and subsequent annealing creates the nitrogen vacancy centre, which has recently attracted much attention for quantum information processing application. Another possible product of irradiation and annealing of nitrogen containing diamond is interstitial nitrogen. Presumably, a mobile carbon interstitial migrates to a substitutional nitrogen to produce an interstitial nitrogen complex which may or may not be mobile. The configuration(s) of interstitial nitrogen related defects (e.g. bond centred, [001]-split) are not known. An infra-red (IR) absorption peak at 1450 cm-1 labelled H1a has been associated with an nitrogen interstitial complex. [1] Theoretical modelling suggested that this IR local mode is due to a bond centred nitrogen interstitial [2]. However, more recent modelling [3] suggests that this defect is mobile at temperatures were H1a is stable and instead assign H1a to two nitrogen atoms occupying a single lattice site in a [001]-split configuration. To date no electron paramagnetic resonance (EPR) spectra have been conclusively associated with an interstitial nitrogen defect.
In this study we present data from new EPR and optical absorption studies in combination with uniaxial stress of nitrogen interstitial related defects in electron irradiated and annealed nitrogen doped diamond. These measurements yield symmetry information about the defects allowing us to determine which of the proposed models are possible. EPR spectra of nitrogen interstitial related defects in samples isotopically enriched with 15N are reported and we show that these explain the lack of previous EPR data for these defects. Correlations between the IR absorbance and the integrated intensity of the new EPR defects are studied for varying irradiation doses and annealing temperatures.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and PAHs. This mixed chemistry is unlikely to be related to carbon dredge up, as third dredge-up is not expected to occur in the low mass bulge stars. We show that the phenomenon is widespread, and is seen in 30 nebulae out of our sample of 40. A strong correlation is found between strength of the PAH bands and morphology, in particular, the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. We conclude that the mixed chemistry phenomenon occurring in the galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an UV-irradiated, dense torus. © 2012 International Astronomical Union.
Phage Display-Derived Binders Able to Distinguish Listeria monocytogenes from Other Listeria Species
Resumo:
The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries. © 2013 Morton et al.
Resumo:
Flattening filter free (FFF) linear accelerators allow for an increase in instantaneous dose-rate of the x-ray pulses by a factor of 2-6 over the conventional flattened output. As a result, radiobiological investigations are being carried out to determine the effect of these higher dose-rates on cell response. The studies reported thus far have presented conflicting results, highlighting the need for further investigation. To determine the radiobiological impact of the increased dose-rates from FFF exposures a Varian Truebeam medical linear accelerator was used to irradiate two human cancer cell lines in vitro, DU-145 prostate and H460 non-small cell lung, with both flattened and FFF 6 MV beams. The fluence profile of the FFF beam was modified using a custom-designed Nylon compensator to produce a similar dose profile to the flattened beam (6X) at the cell surface but at a higher instantaneous dose-rate. For both cell lines there appeared to be no significant change in cell survival. Curve fitting coefficients for DU145 cells irradiated with constant average dose-rates were 6X: alpha = 0.09 +/- 0.03, beta = 0.03 +/- 0.01 and 6FFF: alpha = 0.14 +/- 0.13, beta = 0.03 +/- 0.02 with a significance of p = 0.75. For H460 cells irradiated with the same instantaneous dose-rate but different average dose-rate the fit coefficients were 6FFF (low dose-rate): alpha = 0.21 +/- 0.11, 0.07 +/- 0.02 and 6FFF (high dose-rate): alpha = 0.21 +/- 0.16, 0.07 +/- 0.03, with p = 0.79. The results indicate that collective damage behaviour does not occur at the instantaneous dose-rates investigated here and that the use of either modality should result in the same clinical outcome, however this will require further validation in vivo.
Resumo:
SIGNIFICANCE:
Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules.
RECENT ADVANCES:
Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes.
CRITICAL ISSUES:
Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms.
FUTURE DIRECTIONS:
An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.
Resumo:
The presence of paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP) toxins in seafood is a severe and growing threat to human health. In order to minimize the risks of human exposure, the maximum content of these toxins in seafood has been limited by legal regulations worldwide. The regulated limits are established in equivalents of the main representatives of the groups: saxitoxin (STX), okadaic acid (OA) and domoic acid (DA), for PSP, DSP and ASP, respectively. In this study a multi-detection method to screen shellfish samples for the presence of these toxins simultaneously was developed. Multiplexing was achieved using a solid-phase microsphere assay coupled to flow-fluorimetry detection, based on the Luminex xMap technology. The multi-detection method consists of three simultaneous competition immunoassays. Free toxins in solution compete with STX, OA or DA immobilized on the surface of three different classes of microspheres for binding to specific monoclonal antibodies. The IC50 obtained in buffer was similar in single- and multi-detection: 5.6 ± 1.1 ng/mL for STX, 1.1 ± 0.03 ng/mL for OA and 1.9 ± 0.1 ng/mL for DA. The sample preparation protocol was optimized for the simultaneous extraction of STX, OA and DA with a mixture of methanol and acetate buffer. The three immunoassays performed well with mussel and scallop matrixes displaying adequate dynamic ranges and recovery rates (around 90 % for STX, 80 % for OA and 100 % for DA). This microsphere-based multi-detection immunoassay provides an easy and rapid screening method capable of detecting simultaneously in the same sample three regulated groups of marine toxins.
Resumo:
The potential that laser based particle accelerators offer to solve sizing and cost issues arising with conventional proton therapy has generated great interest in the understanding and development of laser ion acceleration, and in investigating the radiobiological effects induced by laser accelerated ions. Laser-driven ions are produced in bursts of ultra-short duration resulting in ultra-high dose rates, and an investigation at Queen's University Belfast was carried out to investigate this virtually unexplored regime of cell rdaiobiology. This employed the TARANIS terawatt laser producing protons in the MeV range for proton irradiation, with dose rates exceeding 10 Gys on a single exposure. A clonogenic assay was implemented to analyse the biological effect of proton irradiation on V79 cells, which, when compared to data obtained with the same cell line irradiated with conventionally accelerated protons, was found to show no significant difference. A Relative Biological effectiveness of 1.4±0.2 at 10 % Survival Fraction was estimated from a comparison with a 225 kVp X-ray source. © 2013 SPIE.
Resumo:
Radionuclide therapy for cancer is undergoing a renaissance, with a wide range of radionuclide and clinical delivery systems currently under investigation. Dosimetry at the cellular and sub-cellular level is complex with inhomogeneity and incomplete targeting of all cells such that some tumor cells will receive little or no direct radiation energy. There is now sufficient preclinical evidence of a Bystander response which can modulate the biology of these un-irradiated cells with current research demonstrating both protective and inhibitory responses. Dependence upon fraction of irradiated cells has also been found and the presence of functional gap junctions appears to be import for several Bystander responses. The selection of either high or low LET radionuclides may be critical. While low LET radionuclides appear to have a Bystander response proportional to dose, the dose-response from high LET radionuclides are more complex. In media transfer experiments a "U" shaped response curve has been demonstrated for high LET treatments. However this "U" shaped response has not been seen with co-culture experiments and its relevance remains uncertain. For high LET treatments there is a suggestion that dose rate effects may also be important with inhibitory effects noted with 125I labelling study and a stimulatory seen with 123I labelling in one study.© 2013 Brady, O’Sullivan and Prise.
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
The combined effect of STZ-diabetes and ionising radiation on the rat retina was investigated. Wistar rats, which had been diabetic for 6 months, were irradiated with a single dose of x-rays (1500 cGy) and the ultrastructural effects evaluated at 4-10 mths post-irradiation. At 4 months post-irradiation, the outer nuclear layer of the retina was greatly reduced in thickness and the photoreceptor outer segments were disorganised and reduced in length. In addition, the nerve fibre layer contained many cytoid bodies and there were many redundant basement membrane tubes throughout the inner retina. By 6 months post-irradiation, the photoreceptor cells were virtually absent, bringing the external limiting membrane into close apposition to the RPE. Throughout large areas of the outer retina, RPE cells were hypertrophic and some had proliferated into the inner retina. In many regions, proliferating retinal capillaries were observed within the RPE layer, and at 8 months post-irradiation, some vessels extended into the inner retina accompanied by RPE cells. At 10 months post-irradiation, the RPE was atrophic and degenerative with retinal glial cells coming into contact with Bruch's membrane. In some areas, the glia which had breached Bruch's membrane had invaded the underlying choroid. Where glial cells contacted the choriocapillaries, the vessels assumed the appearance of retinal vessels with plump endothelia and no fenestrations. This study has described a progressive inner retinal ischemia, with cytoid bodies, capillary non-perfusion and general atrophy of the inner retina intensifying markedly with increasing post-irradiation time.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The clinical impression that pre-existing diabetes exacerbates radiation injury to the retinal vasculature was studied in STZ diabetic rats. Half of 2 groups of streptozotocin (STZ)-induced diabetic rats and 1 group of normal animals had their right eyes irradiated with 1000 cGy of 90 KVP x-rays. The prevalence of acellular capillaries in trypsin digests of the retinal vasculature was quantified for each of the 6 groups of animals at 6.5 months post-irradiation. The prevalence of acellular capillaries in both non-irradiated diabetic groups was significantly higher than in controls while the irradiated animals in each of the three main categories showed a statistically significant increase compared to their non-irradiated equivalents. However, the net increase in acellular capillaries following irradiation was much greater in rats with an 8 month term of pre-existing diabetes (180%) than in those which had only been diabetic for 3 months (36%). The results of this study suggest a synergistic relationship between pre-existing diabetes and ionising radiation in the development of retinal vasculopathy, and that the potentiation of the vascular damage is dependent on the duration of diabetes prior to radiation exposure.
Resumo:
In a group of eighteen patients with uveal melanomas, seven underwent low-dose pre-enucleation irradiation of approximately 2000 cGy. All the tumours were propagated in tissue culture and the growth characteristics of tumour cells from irradiated eyes were compared with tumour cells from non-irradiated eyes. Cultures were observed with phase-contrast microscopy, and radioactive thymidine labelling was used to study cell turnover. Although tissue samples from peripheral areas of irradiated tumours produced a mixture of viable and non-viable cells, with reduced ability to attach to substrate, central regions of irradiated tumours contained viable cells which propagated freely in tissue culture.
Resumo:
In this study Lister rats were given doses of X-rays ranging from 200-2,000 Rads to the retina of one eye, sacrificed at various time intervals between one hour and one month later and the irradiated eye processed for electron microscopy. The rod photoreceptor cells were by far the most radiosensitive cells in the retina, their outer segments showing distinctive membrane damage at one hour after 200 Rads of X-rays. Photoreceptor cell death was not seen at doses less than 1,000 Rads in the time period of the experiment. The retinal pigment epithelial (RPE) cells showed damage in the form of mitochondrial swelling but only in doses over 500 Rads. Retinal pigment epithelial cell loss did not occur under 2,000 Rads. The inner retinal neurones, glial elements and the retinal vasculature did not show any ill effects in the time period of this study.