972 resultados para Intrinsic trachea nervous system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. Symptoms of ciguatera include a range of gastrointestinal, neurological and cardiovascular disturbances. This review examines progress in our understanding of ciguatera from the work of Banner in the late 1950s to the present. Similarities and differences in ciguatera in the Pacific Ocean, Indian Ocean and Caribbean Sea are highlighted, and future research directions are suggested. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DCC (deleted in colon cancer), Neogenin and UNC-5 are all members of the immunoglobulin superfamily of transmembrane receptors which are believed to play a role in axon guidance by binding to their ligands, the Netrin/UNC-40 family of secreted molecules (Cell. Mol. Life Sci. 56 (1999) 62; Curr. Opin. Genet. Dev. 7 (1997) 87). Although zebrafish homologues of the Netrin family of secreted molecules have been reported, to date there has been no published description of zebrafish DCC homologues (Mol. Cell. Neurosci. 9 (1997) 293., Mol. Cell. Neurosci. I I ( 1998) 194; Mech. Dev. 62 (1997) 147). We report here the expression pattern of a zebrafish dcc (zdcc) homologue during the initial period of neurogenesis and axon tract formation within the developing central nervous system. Between 12 and 33 h post-fertilisation zdcc is expressed in a dynamic spatiotemporal pattern in all major subdivisions of the central nervous system. Double-labelling for zdcc and the post-mitotic neuronal marker HNK-1 revealed that subpopulations of neurons within the first nuclei of the zebrafish brain express zdcc. These results support our previous observation that patterning of neuronal clusters in the zebrafish brain occurs early in development (Dev. Bioi, 229 (2001) 271). (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in trunk muscle recruitment have been identified in people with low-back pain (LBP). These differences may be due to changes in the planning of the motor response or due to delayed transmission of the descending motor command in the nervous system. These two possibilities were investigated by comparison of the effect of task complexity on the feedforward postural response of the trunk muscles associated with rapid arm movement in people with and without LBP. Task complexity was increased by variation of the expectation for a command to either abduct or flex the upper limb. The onsets of electromyographic activity (EMG) of the abdominal and deltoid muscles were measured. In control subjects, while the reaction time of deltoid and the superficial abdominal muscles increased with task complexity, the reaction time of transversus abdominis (TrA) was constant. However, in subjects with LBP, the reaction time of TrA increased along with the other muscles as task complexity was increased. While inhibition of the descending motor command cannot be excluded, it is more likely that the change in recruitment M of TrA represents a more complex change in organisation of the postural response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Schizophrenia is a chronic, disabling brain disease that affects approxmately 1% of the world's population. It is characterized by delusions, hallucinations and formal thought disorder, together with a decline in socio-occupational functioning. While the causes for schizophrenia remain unknown, evidence from family, twin and adoption studies clearly demonstrates that it aggregates in families, with this clustering largely attributable to genetic rather than cultural or environmental factors. Identifying the genes involved, however, has proven to be a difficult task because schizophrenia is a complex trait characterized by an imprecise phenotype, the existence of phenocopies and the presence of low disease penetrance, 2. The current working hypothesis for schizophrenia causation is that multiple genes of small to moderate effect confer compounding risk through interactions with each other and with non-genetic risk factors, The same genes may be commonly involved in conferring risk across populations or they may vary in number and strength between different populations. To search for evidence of such genetic loci, both candidate gene and genome-wide linkage studies have been used in clinical cohorts collected from a variety of populations. Collectively, these works provide some evidence for the involvement of a number of specific genes (e.g. the 5-hydroxytryptamine (5-HT) type 2a receptor (5-HT2a) gene and the dopamine D-3 receptor gene) and as yet unidentified factors localized to specific chromosomal regions, including 6p, 6q, 8p, 13q and 22q, These data provide suggestive, but no conclusive, evidence for causative genes. 3. To enable further progress there is a need to: (i) collect fine-grained clinical datasets while searching the schizophrenia phenotype for subgroups or dimensions that may provide a more direct route to causative genes; and (ii) integrate recent refinements in molecular genetic technology, including modern composite marker maps, DNA expression assays and relevant animal models, while using the latest analytical techniques to extract maximum information in order to help distinguish a true result from a false-positive finding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Previous studies have demonstrated that chronic pre-synaptic inhibition of transmitter release by morphine evokes a counter-adaptive response in the sympathetic nerve terminals that manifests itself as an increase in transmitter release during acute withdrawal. In the present study we examined the possibility that other pre-synaptically acting drugs such as clonidine also evoke a counter-adaptive response in the sympathetic nerve terminals. 2 In chronically saline treated (CST) preparations, clonidine (0.5 muM) completely abolished evoked transmitter release from sympathetic varicosities bathed in an extracellular calcium concentration ([Ca2+](o)) of 2 mM. The inhibitory effect of clonidine was reduced by increasing [Ca2+](o) from 2 to 4 mM and the stimulation frequency from 0.1 to 1 Hz. 3 The nerve terminal impulse (NTI) was not affected by concentrations of clonidine that completely abolished evoked transmitter release. 4 Sympathetic varicosities developed a tolerance to clonidine (0.5 muM) following 7-9 days of chronic exposure to clonidine. 5 Acute withdrawal of preparations following chronic clonidine treatment (CCT) resulted in a significant (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The effect of chronic morphine treatment (CMT) on sympathetic innervation of the mouse vas deferens and on alpha (2)-adrenoceptor mediated autoinhibition has been examined using intracellular recording of excitatory junction potentials (EJPs) and histochemistry. 2 In chronically saline treated (CST) preparations. morphine (1 muM) and the alpha (2)-adrenoceptor agonist (clonidine, 1 muM) decreased the mean amplitude of EJPs evoked with 0.03 Hz stimulation by 81+/-8% (n=16) and 92+/-6% (n=7) respectively. In CMT preparations, morphine (1 muM) and clonidine (1 muM) decreased mean EJP amplitude by 68+/-8% (n = 7) and 79+/-8% (n = 7) respectively. 3 When stimulating the sympathetic axons at 0.03 Hz. the mean EJP amplitude recorded from smooth muscles acutely withdrawn from CMT was four times greater than for CST smooth muscles (40.7+/-3.8 mV, n = 7 compared with 9.9+/-0.3 mV, n = 7). 4 Part of the increase in mean EJP amplitude following CMT was produced by a 31% increase in the density of sympathetic axons and varicosities innervating the smooth muscle. 5 Results from the present study indicate that the effectiveness of alpha (2)-adrenocrptor mediated autoinhibition is only slightly reduced in CMT preparations. Most of the cross tolerance which develops between morphine, clonidine and alpha (2)-adrenoceptor mediated autoinhibition occurs as a consequence of increased efficacy of neuromuscular transmission which is produced by an increase in the probability of transmitter release and an increase in the density of sympathetic innervation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.